1
|
Feng Y, Li Z, Gudukbay Akbulut G, Narayanan V, Kandemir MT, Das CR. FPGA-based accelerator for adaptive banded event alignment in nanopore sequencing data analysis. BMC Bioinformatics 2025; 26:83. [PMID: 40097942 PMCID: PMC11917103 DOI: 10.1186/s12859-024-06011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 12/09/2024] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Adaptive Banded Event Alignment (ABEA) stands as a critical algorithmic component in sequence polishing and DNA methylation detection, employing dynamic programming to align raw Nanopore signal with reference reads. Motivated by the observation that, compared to CPUs and GPUs, cutting-edge FPGAs demonstrate-in certain cases-superior performance at a reduced cost and energy consumption, this paper presents an efficient FPGA-based accelerator for ABEA, leveraging the inherent high parallelism and sequential access pattern within ABEA. RESULT Our proposed FPGA-based ABEA accelerator significantly enhances ABEA performance compared to the original CPU-based implementation in Nanopolish as well as the state-of-art acceleration on GPU and FPGA platforms. Specifically, targeting Xilinx VU9P, our accelerator achieves an average throughput speedup of 10.05 × over the CPU-only implementation, an average 1.81 × speedup over the state-of-art GPU acceleration with only 7.2% of the energy, and a speedup of 10.11 × compared to an existing FPGA accelerator. CONCLUSION Our work demonstrates that intensive genome analysis can benefit significantly from cutting-edge FPGAs, offering improvements in both performance and energy consumption.
Collapse
Affiliation(s)
- Yilin Feng
- Department of Computer Science and Engineering, The Pennsylvania State University, 201 Old Main, University Park, PA, 16802, USA.
| | - Zheyu Li
- Department of Computer Science and Engineering, The Pennsylvania State University, 201 Old Main, University Park, PA, 16802, USA
| | - Gulsum Gudukbay Akbulut
- Department of Computer Science and Engineering, The Pennsylvania State University, 201 Old Main, University Park, PA, 16802, USA
| | - Vijaykrishnan Narayanan
- Department of Computer Science and Engineering, The Pennsylvania State University, 201 Old Main, University Park, PA, 16802, USA
| | - Mahmut Taylan Kandemir
- Department of Computer Science and Engineering, The Pennsylvania State University, 201 Old Main, University Park, PA, 16802, USA
| | - Chita R Das
- Department of Computer Science and Engineering, The Pennsylvania State University, 201 Old Main, University Park, PA, 16802, USA
| |
Collapse
|
2
|
Yang F, Cao LJ, Nguyen P, Ma ZZ, Chen JC, Song W, Wei SJ. Hierarchical architecture of neo-sex chromosomes and accelerated adaptive evolution in tortricid moths. Genome Res 2025; 35:66-77. [PMID: 39762048 PMCID: PMC11789632 DOI: 10.1101/gr.279569.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025]
Abstract
Sex chromosomes can expand through fusion with autosomes, thereby acquiring unique evolutionary patterns. In butterflies and moths (Lepidoptera), these sex chromosome-autosome (SA) fusions occur relatively frequently, suggesting possible evolutionary advantages. Here, we investigated how SA fusion affects chromosome features and molecular evolution in leafroller moths (Lepidoptera: Tortricidae). Phylogenomic analysis showed that Tortricidae diverged ∼124 million years ago, accompanied by an SA fusion between the Merian elements M(20 + 17) and MZ. In contrast to partial autosomal fusions, the fused neo-Z Chromosome developed a hierarchical architecture, in which the three elements exhibit heterogeneous sequence features and evolutionary patterns. Specifically, the M17 part had a distinct base composition and chromatin domains. Unlike M20 and MZ, M17 was expressed at the same levels as autosomes in both sexes, compensating for the lost gene dosage in females. Concurrently, the SA fusion drove M17 as an evolutionary hotspot, accelerating the evolution of several genes related to ecological adaptation (e.g., ABCCs) and facilitating the divergence of closely related species, whereas the undercompensated M20 did not show such an effect. Thus, accelerated evolution under a novel pattern of dosage compensation may have favored the adaptive radiation of this group. This study demonstrates the association between a karyotype variant and adaptive evolution and explains the recurrent SA fusion in the Lepidoptera.
Collapse
Affiliation(s)
- Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Institute of Zoology, Chinese Academy of Science, Beijing 100101, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Petr Nguyen
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05 Ceske Budejovice, Czech Republic
| | - Zhong-Zheng Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Song
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| |
Collapse
|
3
|
Smith GJ, van Alen TA, van Kessel MA, Lücker S. Simple, reference-independent assessment to empirically guide correction and polishing of hybrid microbial community metagenomic assembly. PeerJ 2024; 12:e18132. [PMID: 39529629 PMCID: PMC11552494 DOI: 10.7717/peerj.18132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
Hybrid metagenomic assembly of microbial communities, leveraging both long- and short-read sequencing technologies, is becoming an increasingly accessible approach, yet its widespread application faces several challenges. High-quality references may not be available for assembly accuracy comparisons common for benchmarking, and certain aspects of hybrid assembly may benefit from dataset-dependent, empiric guidance rather than the application of a uniform approach. In this study, several simple, reference-free characteristics-particularly coding gene content and read recruitment profiles-were hypothesized to be reliable indicators of assembly quality improvement during iterative error-fixing processes. These characteristics were compared to reference-dependent genome- and gene-centric analyses common for microbial community metagenomic studies. Two laboratory-scale bioreactors were sequenced with short- and long-read platforms, and assembled with commonly used software packages. Following long read assembly, long read correction and short read polishing were iterated up to ten times to resolve errors. These iterative processes were shown to have a substantial effect on gene- and genome-centric community compositions. Simple, reference-free assembly characteristics, specifically changes in gene fragmentation and short read recruitment, were robustly correlated with advanced analyses common in published comparative studies, and therefore are suitable proxies for hybrid metagenome assembly quality to simplify the identification of the optimal number of correction and polishing iterations. As hybrid metagenomic sequencing approaches will likely remain relevant due to the low added cost of short-read sequencing for differential coverage binning or the ability to access lower abundance community members, it is imperative that users are equipped to estimate assembly quality prior to downstream analyses.
Collapse
Affiliation(s)
- Garrett J. Smith
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Theo A. van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Maartje A.H.J. van Kessel
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
4
|
González-Reguero D, Robas-Mora M, Alonso MR, Fernández-Pastrana VM, Lobo AP, Gómez PAJ. Induction of phytoextraction, phytoprotection and growth promotion activities in Lupinus albus under mercury abiotic stress conditions by Peribacillus frigoritolerans subsp., mercuritolerans subsp. nov. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117139. [PMID: 39368152 DOI: 10.1016/j.ecoenv.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Strain SAICEUPBMT was isolated from soils of Almadén (Ciudad Real, Spain), subjected to a high mercury concentration. SAICEUPBMT significantly increased aerial plant weight, aerial plant length and the development of secondary roots under mercury stress; increased twice the absorption of mercury by the plant, while favoring its development in terms of biomass. Similarly, plants inoculated with SAICEUPBMT and grown in soils contaminated with mercury, express a lower activity of antioxidant enzymes; catalase enzymes (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) for defense against ROS (reactive oxygen species). Whole genome analysis showed that ANI (95. 96 %), dDDH (72.9 %), AAI (93.3 %) and TETRA (0.99) values were on the thresholds established for differentiation a subspecies. The fatty acids analysis related the strain with the Peribacillus frigoritolerans species. And the synapomorphic analysis reveals a common ancestor with analysis related the strain with the Peribacillus frigoritolerans species. Results from genomic analysis together with differences in phenotypic features and chemotaxonomic analysis support the proposal of strain SAICEUPBMT as the type strain of a novel subspecies for which the name Peribacillus frigoritolerans subps. mercuritolerans sp. nov is proposed. The absence of virulence genes and transmissible resistance mechanisms reveals its safety for agronomic uses, under mercury stress conditions. The ability of Peribacillus frigoritolerans subsp. mercuritolerans subsp. nov to improve plant development was tested in a Lupinus albus model, demonstrating a great potential for plant phytoprotection against mercury stress.
Collapse
Affiliation(s)
- Daniel González-Reguero
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain.
| | - Marina Robas-Mora
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain.
| | - Miguel Ramón Alonso
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain
| | - Vanesa M Fernández-Pastrana
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain
| | - Agustín Probanza Lobo
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain
| | - Pedro A Jiménez Gómez
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, Boadilla del Monte 28668, Spain.
| |
Collapse
|
5
|
Martínez D, Gómez M, Hernández C, Campo-Palacio S, González-Robayo M, Montilla M, Pavas-Escobar N, Tovar-Acero C, Geovo-Arias L, Valencia-Urrutia E, Córdoba-Renteria N, Carrillo-Hernandez MY, Ruiz-Saenz J, Martinez-Gutierrez M, Paniz-Mondolfi A, Patiño LH, Muñoz M, Ramírez JD. Cryptic transmission and novel introduction of Dengue 1 and 2 genotypes in Colombia. Virus Evol 2024; 10:veae068. [PMID: 39347444 PMCID: PMC11429525 DOI: 10.1093/ve/veae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Dengue fever remains as a public health challenge in Colombia, standing as the most prevalent infectious disease in the country. The cyclic nature of dengue epidemics, occurring approximately every 3 years, is intricately linked to meteorological events like El Niño Southern Oscillation (ENSO). Therefore, the Colombian system faces challenges in genomic surveillance. This study aimed to evaluate local dengue virus (DENV) transmission and genetic diversity in four Colombian departments with heterogeneous incidence patterns (department is first-level territorial units in Colombia). For this study, we processed 266 serum samples to identify DENV. Subsequently, we obtained 118 genome sequences by sequencing DENV genomes from serum samples of 134 patients infected with DENV-1 and DENV-2 serotypes. The predominant serotype was DENV-2 (108/143), with the Asian-American (AA) genotype (91/118) being the most prevalent one. Phylogenetic analysis revealed concurrent circulation of two lineages of both DENV-2 AA and DENV-1 V, suggesting ongoing genetic exchange with sequences from Venezuela and Cuba. The continuous migration of Venezuelan citizens into Colombia can contribute to this exchange, emphasizing the need for strengthened prevention measures in border areas. Notably, the time to most recent common ancestor analysis identified cryptic transmission of DENV-2 AA since approximately 2015, leading to the recent epidemic. This challenges the notion that major outbreaks are solely triggered by recent virus introductions, emphasizing the importance of active genomic surveillance. The study also highlighted the contrasting selection pressures on DENV-1 V and DENV-2 AA, with the latter experiencing positive selection, possibly influencing its transmissibility. The presence of a cosmopolitan genotype in Colombia, previously reported in Brazil and Peru, raises concerns about transmission routes, emphasizing the necessity for thorough DENV evolution studies. Despite limitations, the study underscores genomic epidemiology's crucial role in early detection and comprehension of DENV genotypes, recommending the use of advanced sequencing techniques as an early warning system to help prevent and control dengue outbreaks in Colombia and worldwide.
Collapse
Affiliation(s)
- David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sandra Campo-Palacio
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
| | - Marina González-Robayo
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
| | - Marcela Montilla
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
- Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Norma Pavas-Escobar
- Laboratorio de Salud Pública, Secretaría de Salud Departamental Meta, Villavicencio, Colombia
- Universidad Cooperativa de Colombia, Villavicencio, Colombia
| | - Catalina Tovar-Acero
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Lillys Geovo-Arias
- Secretaria de Salud departamental Chocó-Laboratorio de Salud Pública, Chocó, Colombia
| | | | | | - Marlen Y Carrillo-Hernandez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Julian Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Marlen Martinez-Gutierrez
- Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellín, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Epidemiology Laboratory, Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Castellano KR, Batta-Lona P, Bucklin A, O'Neill RJ. Salpa genome and developmental transcriptome analyses reveal molecular flexibility enabling reproductive success in a rapidly changing environment. Sci Rep 2023; 13:21056. [PMID: 38030690 PMCID: PMC10686999 DOI: 10.1038/s41598-023-47429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
Ocean warming favors pelagic tunicates, such as salps, that exhibit increasingly frequent and rapid population blooms, impacting trophic dynamics and composition and human marine-dependent activities. Salp blooms are a result of their successful reproductive life history, alternating seasonally between asexual and sexual protogynous (i.e. sequential) hermaphroditic stages. While predicting future salp bloom frequency and intensity relies on an understanding of the transitions during the sexual stage from female through parturition and subsequent sex change to male, these transitions have not been explored at the molecular level. Here we report the development of the first complete genome of S. thompsoni and the North Atlantic sister species S. aspera. Genome and comparative analyses reveal an abundance of repeats and G-quadruplex (G4) motifs, a highly stable secondary structure, distributed throughout both salp genomes, a feature shared with other tunicates that perform alternating sexual-asexual reproductive strategies. Transcriptional analyses across sexual reproductive stages for S. thompsoni revealed genes associated with male sex differentiation and spermatogenesis are expressed as early as birth and before parturition, inconsistent with previous descriptions of sequential sexual differentiation in salps. Our findings suggest salp are poised for reproductive success at birth, increasing the potential for bloom formation as ocean temperatures rise.
Collapse
Affiliation(s)
- Kate R Castellano
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Paola Batta-Lona
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Ann Bucklin
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- Department of Genetics and Genome Science, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
7
|
Wouters M, Bastiaanse H, Rombauts S, de Vries L, De Pooter T, Strazisar M, Neutelings G, Vanholme R, Boerjan W. Suppression of the Arabidopsis cinnamoyl-CoA reductase 1-6 intronic T-DNA mutation by epigenetic modification. PLANT PHYSIOLOGY 2023; 192:3001-3016. [PMID: 37139862 PMCID: PMC7614886 DOI: 10.1093/plphys/kiad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) transfer DNA (T-DNA) insertion collections are popular resources for fundamental plant research. Cinnamoyl-CoA reductase 1 (CCR1) catalyzes an essential step in the biosynthesis of the cell wall polymer lignin. Accordingly, the intronic T-DNA insertion mutant ccr1-6 has reduced lignin levels and shows a stunted growth phenotype. Here, we report restoration of the ccr1-6 mutant phenotype and CCR1 expression levels after a genetic cross with a UDP-glucosyltransferase 72e1 (ugt72e1),-e2,-e3 T-DNA mutant. We discovered that the phenotypic recovery was not dependent on the UGT72E family loss of function but due to an epigenetic phenomenon called trans T-DNA suppression. Via trans T-DNA suppression, the gene function of an intronic T-DNA mutant was restored after the introduction of an additional T-DNA sharing identical sequences, leading to heterochromatinization and splicing out of the T-DNA-containing intron. Consequently, the suppressed ccr1-6 allele was named epiccr1-6. Long-read sequencing revealed that epiccr1-6, not ccr1-6, carries dense cytosine methylation over the full length of the T-DNA. We showed that the SAIL T-DNA in the UGT72E3 locus could trigger the trans T-DNA suppression of the GABI-Kat T-DNA in the CCR1 locus. Furthermore, we scanned the literature for other potential cases of trans T-DNA suppression in Arabidopsis and found that 22% of the publications matching our query report on double or higher-order T-DNA mutants that meet the minimal requirements for trans T-DNA suppression. These combined observations indicate that intronic T-DNA mutants need to be used with caution since methylation of intronic T-DNA might derepress gene expression and can thereby confound results.
Collapse
Affiliation(s)
- Marlies Wouters
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Héloïse Bastiaanse
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stéphane Rombauts
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Lisanne de Vries
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Godfrey Neutelings
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576, CNRS, Université de Lille, Lille, France
| | - Ruben Vanholme
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Wout Boerjan
- VIB Center for Plants Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Feng Y, Gudukbay Akbulut G, Tang X, Gunasekaran JR, Rahman A, Medvedev P, Kandemir M. GPU-accelerated and pipelined methylation calling. BIOINFORMATICS ADVANCES 2022; 2:vbac088. [PMID: 36699365 PMCID: PMC9757827 DOI: 10.1093/bioadv/vbac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Motivation The third-generation DNA sequencing technologies, such as Nanopore Sequencing, can operate at very high speeds and produce longer reads, which in turn results in a challenge for the computational analysis of such massive data. Nanopolish is a software package for signal-level analysis of Oxford Nanopore sequencing data. Call-methylation module of Nanopolish can detect methylation based on Hidden Markov Model (HMM). However, Nanopolish is limited by the long running time of some serial and computationally expensive processes. Among these, Adaptive Banded Event Alignment (ABEA) is the most time-consuming step, and the prior work, f5c, has already parallelized and optimized ABEA on GPU. As a result, the remaining methylation score calculation part, which uses HMM to identify if a given base is methylated or not, has become the new performance bottleneck. Results This article focuses on the call-methylation module that resides in the Nanopolish package. We propose Galaxy-methyl, which parallelizes and optimizes the methylation score calculation step on GPU and then pipelines the four steps of the call-methylation module. Galaxy-methyl increases the execution concurrency across CPUs and GPUs as well as hardware resource utilization for both. The experimental results collected indicate that Galaxy-methyl can achieve 3×-5× speedup compared with Nanopolish, and reduce the total execution time by 35% compared with f5c, on average. Availability and implementation The source code of Galaxy-methyl is available at https://github.com/fengyilin118/.
Collapse
Affiliation(s)
- Yilin Feng
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gulsum Gudukbay Akbulut
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xulong Tang
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Amatur Rahman
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Paul Medvedev
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mahmut Kandemir
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Boostrom I, Portal EAR, Spiller OB, Walsh TR, Sands K. Comparing Long-Read Assemblers to Explore the Potential of a Sustainable Low-Cost, Low-Infrastructure Approach to Sequence Antimicrobial Resistant Bacteria With Oxford Nanopore Sequencing. Front Microbiol 2022; 13:796465. [PMID: 35308384 PMCID: PMC8928191 DOI: 10.3389/fmicb.2022.796465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Long-read sequencing (LRS) can resolve repetitive regions, a limitation of short read (SR) data. Reduced cost and instrument size has led to a steady increase in LRS across diagnostics and research. Here, we re-basecalled FAST5 data sequenced between 2018 and 2021 and analyzed the data in relation to gDNA across a large dataset (n = 200) spanning a wide GC content (25-67%). We examined whether re-basecalled data would improve the hybrid assembly, and, for a smaller cohort, compared long read (LR) assemblies in the context of antimicrobial resistance (AMR) genes and mobile genetic elements. We included a cost analysis when comparing SR and LR instruments. We compared the R9 and R10 chemistries and reported not only a larger yield but increased read quality with R9 flow cells. There were often discrepancies with ARG presence/absence and/or variant detection in LR assemblies. Flye-based assemblies were generally efficient at detecting the presence of ARG on both the chromosome and plasmids. Raven performed more quickly but inconsistently recovered small plasmids, notably a ∼15-kb Col-like plasmid harboring bla KPC . Canu assemblies were the most fragmented, with genome sizes larger than expected. LR assemblies failed to consistently determine multiple copies of the same ARG as identified by the Unicycler reference. Even with improvements to ONT chemistry and basecalling, long-read assemblies can lead to misinterpretation of data. If LR data are currently being relied upon, it is necessary to perform multiple assemblies, although this is resource (computing) intensive and not yet readily available/useable.
Collapse
Affiliation(s)
- Ian Boostrom
- Division of Infection and Immunity, Department of Medical Microbiology, Cardiff University, Cardiff, United Kingdom
| | - Edward A. R. Portal
- Division of Infection and Immunity, Department of Medical Microbiology, Cardiff University, Cardiff, United Kingdom
| | - Owen B. Spiller
- Division of Infection and Immunity, Department of Medical Microbiology, Cardiff University, Cardiff, United Kingdom
| | - Timothy R. Walsh
- Division of Infection and Immunity, Department of Medical Microbiology, Cardiff University, Cardiff, United Kingdom
- Department of Zoology, Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Kirsty Sands
- Division of Infection and Immunity, Department of Medical Microbiology, Cardiff University, Cardiff, United Kingdom
- Department of Zoology, Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Hoang MTV, Irinyi L, Hu Y, Schwessinger B, Meyer W. Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Front Microbiol 2022; 12:708550. [PMID: 35069461 PMCID: PMC8770865 DOI: 10.3389/fmicb.2021.708550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of the causative infectious agent is essential in the management of infectious diseases, with the ideal diagnostic method being rapid, accurate, and informative, while remaining cost-effective. Traditional diagnostic techniques rely on culturing and cell propagation to isolate and identify the causative pathogen. These techniques are limited by the ability and the time required to grow or propagate an agent in vitro and the facts that identification based on morphological traits are non-specific, insensitive, and reliant on technical expertise. The evolution of next-generation sequencing has revolutionized genomic studies to generate more data at a cheaper cost. These are divided into short- and long-read sequencing technologies, depending on the length of reads generated during sequencing runs. Long-read sequencing also called third-generation sequencing emerged commercially through the instruments released by Pacific Biosciences and Oxford Nanopore Technologies, although relying on different sequencing chemistries, with the first one being more accurate both platforms can generate ultra-long sequence reads. Long-read sequencing is capable of entirely spanning previously established genomic identification regions or potentially small whole genomes, drastically improving the accuracy of the identification of pathogens directly from clinical samples. Long-read sequencing may also provide additional important clinical information, such as antimicrobial resistance profiles and epidemiological data from a single sequencing run. While initial applications of long-read sequencing in clinical diagnosis showed that it could be a promising diagnostic technique, it also has highlighted the need for further optimization. In this review, we show the potential long-read sequencing has in clinical diagnosis of fungal infections and discuss the pros and cons of its implementation.
Collapse
Affiliation(s)
- Minh Thuy Vi Hoang
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yiheng Hu
- Research School of Biology, Australia National University, Canberra, ACT, Australia
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
11
|
Lee JY, Kong M, Oh J, Lim J, Chung SH, Kim JM, Kim JS, Kim KH, Yoo JC, Kwak W. Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Sci Rep 2021; 11:20740. [PMID: 34671046 PMCID: PMC8528807 DOI: 10.1038/s41598-021-00178-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/07/2021] [Indexed: 01/22/2023] Open
Abstract
Assembling high-quality microbial genomes using only cost-effective Nanopore long-read systems such as Flongle is important to accelerate research on the microbial genome and the most critical point for this is the polishing process. In this study, we performed an evaluation based on BUSCO and Prokka gene prediction in terms of microbial genome assembly for eight state-of-the-art Nanopore polishing tools and combinations available. In the evaluation of individual tools, Homopolish, PEPPER, and Medaka demonstrated better results than others. In combination polishing, the second round Homopolish, and the PEPPER × medaka combination also showed better results than others. However, individual tools and combinations have specific limitations on usage and results. Depending on the target organism and the purpose of the downstream research, it is confirmed that there remain some difficulties in perfectly replacing the hybrid polishing carried out by the addition of a short-read. Nevertheless, through continuous improvement of the protein pores, related base-calling algorithms, and polishing tools based on improved error models, a high-quality microbial genome can be achieved using only Nanopore reads without the production of additional short-read data. The polishing strategy proposed in this study is expected to provide useful information for assembling the microbial genome using only Nanopore reads depending on the target microorganism and the purpose of the research.
Collapse
Affiliation(s)
| | | | - Jinjoo Oh
- JCBio. Co., Ltd., Seoul, 05836, Korea
| | - JinSoo Lim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 05836, Korea
| | - Sung Hee Chung
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jung-Min Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | | | | | - Woori Kwak
- Gencube Plus, Seoul, 08592, Korea.
- Hoonygen, Seoul, 08592, Korea.
| |
Collapse
|