1
|
Razali SA, Shamsir MS, Ishak NF, Low CF, Azemin WA. Riding the wave of innovation: immunoinformatics in fish disease control. PeerJ 2023; 11:e16419. [PMID: 38089909 PMCID: PMC10712311 DOI: 10.7717/peerj.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 12/18/2023] Open
Abstract
The spread of infectious illnesses has been a significant factor restricting aquaculture production. To maximise aquatic animal health, vaccination tactics are very successful and cost-efficient for protecting fish and aquaculture animals against many disease pathogens. However, due to the increasing number of immunological cases and their complexity, it is impossible to manage, analyse, visualise, and interpret such data without the assistance of advanced computational techniques. Hence, the use of immunoinformatics tools is crucial, as they not only facilitate the management of massive amounts of data but also greatly contribute to the creation of fresh hypotheses regarding immune responses. In recent years, advances in biotechnology and immunoinformatics have opened up new research avenues for generating novel vaccines and enhancing existing vaccinations against outbreaks of infectious illnesses, thereby reducing aquaculture losses. This review focuses on understanding in silico epitope-based vaccine design, the creation of multi-epitope vaccines, the molecular interaction of immunogenic vaccines, and the application of immunoinformatics in fish disease based on the frequency of their application and reliable results. It is believed that it can bridge the gap between experimental and computational approaches and reduce the need for experimental research, so that only wet laboratory testing integrated with in silico techniques may yield highly promising results and be useful for the development of vaccines for fish.
Collapse
Affiliation(s)
- Siti Aisyah Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
- Biological Security and Sustainability Research Interest Group (BIOSES), Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nur Farahin Ishak
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Chen-Fei Low
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
2
|
Qu W, You R, Mamitsuka H, Zhu S. DeepMHCI: an anchor position-aware deep interaction model for accurate MHC-I peptide binding affinity prediction. Bioinformatics 2023; 39:btad551. [PMID: 37669154 PMCID: PMC10516514 DOI: 10.1093/bioinformatics/btad551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/06/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
MOTIVATION Computationally predicting major histocompatibility complex class I (MHC-I) peptide binding affinity is an important problem in immunological bioinformatics, which is also crucial for the identification of neoantigens for personalized therapeutic cancer vaccines. Recent cutting-edge deep learning-based methods for this problem cannot achieve satisfactory performance, especially for non-9-mer peptides. This is because such methods generate the input by simply concatenating the two given sequences: a peptide and (the pseudo sequence of) an MHC class I molecule, which cannot precisely capture the anchor positions of the MHC binding motif for the peptides with variable lengths. We thus developed an anchor position-aware and high-performance deep model, DeepMHCI, with a position-wise gated layer and a residual binding interaction convolution layer. This allows the model to control the information flow in peptides to be aware of anchor positions and model the interactions between peptides and the MHC pseudo (binding) sequence directly with multiple convolutional kernels. RESULTS The performance of DeepMHCI has been thoroughly validated by extensive experiments on four benchmark datasets under various settings, such as 5-fold cross-validation, validation with the independent testing set, external HPV vaccine identification, and external CD8+ epitope identification. Experimental results with visualization of binding motifs demonstrate that DeepMHCI outperformed all competing methods, especially on non-9-mer peptides binding prediction. AVAILABILITY AND IMPLEMENTATION DeepMHCI is publicly available at https://github.com/ZhuLab-Fudan/DeepMHCI.
Collapse
Affiliation(s)
- Wei Qu
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Ronghui You
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Hiroshi Mamitsuka
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto Prefecture 611-0011, Japan
- Department of Computer Science, Aalto University, 00076 Espoo, Finland
| | - Shanfeng Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China
- Shanghai Key Lab of Intelligent Information Processing and Shanghai Institute of Artificial Intelligence Algorithm, Fudan University, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 200433, China
| |
Collapse
|
3
|
Tian J, Ma J. The Value of Microbes in Cancer Neoantigen Immunotherapy. Pharmaceutics 2023; 15:2138. [PMID: 37631352 PMCID: PMC10459105 DOI: 10.3390/pharmaceutics15082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Tumor neoantigens are widely used in cancer immunotherapy, and a growing body of research suggests that microbes play an important role in these neoantigen-based immunotherapeutic processes. The human body and its surrounding environment are filled with a large number of microbes that are in long-term interaction with the organism. The microbiota can modulate our immune system, help activate neoantigen-reactive T cells, and play a great role in the process of targeting tumor neoantigens for therapy. Recent studies have revealed the interconnection between microbes and neoantigens, which can cross-react with each other through molecular mimicry, providing theoretical guidance for more relevant studies. The current applications of microbes in immunotherapy against tumor neoantigens are mainly focused on cancer vaccine development and immunotherapy with immune checkpoint inhibitors. This article summarizes the related fields and suggests the importance of microbes in immunotherapy against neoantigens.
Collapse
Affiliation(s)
- Junrui Tian
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| |
Collapse
|
4
|
Liu R, Hu YF, Huang JD, Fan X. A Bayesian approach to estimate MHC-peptide binding threshold. Brief Bioinform 2023; 24:bbad208. [PMID: 37279464 DOI: 10.1093/bib/bbad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Major histocompatibility complex (MHC)-peptide binding is a critical step in enabling a peptide to serve as an antigen for T-cell recognition. Accurate prediction of this binding can facilitate various applications in immunotherapy. While many existing methods offer good predictive power for the binding affinity of a peptide to a specific MHC, few models attempt to infer the binding threshold that distinguishes binding sequences. These models often rely on experience-based ad hoc criteria, such as 500 or 1000nM. However, different MHCs may have different binding thresholds. As such, there is a need for an automatic, data-driven method to determine an accurate binding threshold. In this study, we proposed a Bayesian model that jointly infers core locations (binding sites), the binding affinity and the binding threshold. Our model provided the posterior distribution of the binding threshold, enabling accurate determination of an appropriate threshold for each MHC. To evaluate the performance of our method under different scenarios, we conducted simulation studies with varying dominant levels of motif distributions and proportions of random sequences. These simulation studies showed desirable estimation accuracy and robustness of our model. Additionally, when applied to real data, our results outperformed commonly used thresholds.
Collapse
Affiliation(s)
- Ran Liu
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ye-Fan Hu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong SAR, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 4/F Professional Block, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong SAR, China
- BayVax Biotech Limited, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 3/F, Laboratory Block, 21 Sassoon Road, Hong Kong SAR, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Clinical Oncology Center, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou 510120, China
- State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaodan Fan
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Keller GLJ, Weiss LI, Baker BM. Physicochemical Heuristics for Identifying High Fidelity, Near-Native Structural Models of Peptide/MHC Complexes. Front Immunol 2022; 13:887759. [PMID: 35547730 PMCID: PMC9084917 DOI: 10.3389/fimmu.2022.887759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
There is long-standing interest in accurately modeling the structural features of peptides bound and presented by class I MHC proteins. This interest has grown with the advent of rapid genome sequencing and the prospect of personalized, peptide-based cancer vaccines, as well as the development of molecular and cellular therapeutics based on T cell receptor recognition of peptide-MHC. However, while the speed and accessibility of peptide-MHC modeling has improved substantially over the years, improvements in accuracy have been modest. Accuracy is crucial in peptide-MHC modeling, as T cell receptors are highly sensitive to peptide conformation and capturing fine details is therefore necessary for useful models. Studying nonameric peptides presented by the common class I MHC protein HLA-A*02:01, here we addressed a key question common to modern modeling efforts: from a set of models (or decoys) generated through conformational sampling, which is best? We found that the common strategy of decoy selection by lowest energy can lead to substantial errors in predicted structures. We therefore adopted a data-driven approach and trained functions capable of predicting near native decoys with exceptionally high accuracy. Although our implementation is limited to nonamer/HLA-A*02:01 complexes, our results serve as an important proof of concept from which improvements can be made and, given the significance of HLA-A*02:01 and its preference for nonameric peptides, should have immediate utility in select immunotherapeutic and other efforts for which structural information would be advantageous.
Collapse
Affiliation(s)
| | | | - Brian M. Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|