1
|
Pan T, Wu F, Zhang J, Xiang B, Huang K, Chen Y, Jin X. The molecular structure of SHISA5 protein and its novel role in primary biliary cholangitis: From single-cell RNA sequencing to biomarkers. Int J Biol Macromol 2025; 296:139775. [PMID: 39800023 DOI: 10.1016/j.ijbiomac.2025.139775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The study collected liver tissue samples from PBC patients and healthy controls and performed transcriptomic analysis of the cells in the samples using single-cell RNA sequencing. The expression characteristics of SHISA5 in PBC were revealed by comparing the difference of SHISA5 protein in the two groups of samples. The structure of SHISA5 protein was predicted and its possible biological function was analysed by bioinformatics method. The results showed that the expression of SHISA5 protein in liver tissue of PBC patients was significantly higher than that of healthy controls. Single-cell RNA sequencing data showed that SHISA5 was mainly expressed in hepatocytes and bile duct cells, and its expression level was positively correlated with the disease activity of PBC. Through structural prediction, we found that the SHISA5 protein molecule has a unique transmembrane domain and may be involved in cell signaling and intercellular interactions. Further functional analysis revealed that SHISA5 may participate in the pathological process of PBC by regulating the differentiation and function of bile duct cells.
Collapse
Affiliation(s)
- Tongtong Pan
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Faling Wu
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Jiarong Zhang
- Department of Infection Control, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Bingyu Xiang
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yongping Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Xiaoya Jin
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Infection Control, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
2
|
Salihoglu R, Balkenhol J, Dandekar G, Liang C, Dandekar T, Bencurova E. Cat-E: A comprehensive web tool for exploring cancer targeting strategies. Comput Struct Biotechnol J 2024; 23:1376-1386. [PMID: 38596315 PMCID: PMC11001601 DOI: 10.1016/j.csbj.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Identifying potential cancer-associated genes and drug targets from omics data is challenging due to its diverse sources and analyses, requiring advanced skills and large amounts of time. To facilitate such analysis, we developed Cat-E (Cancer Target Explorer), a novel R/Shiny web tool designed for comprehensive analysis with evaluation according to cancer-related omics data. Cat-E is accessible at https://cat-e.bioinfo-wuerz.eu/. Cat-E compiles information on oncolytic viruses, cell lines, gene markers, and clinical studies by integrating molecular datasets from key databases such as OvirusTB, TCGA, DrugBANK, and PubChem. Users can use all datasets and upload their data to perform multiple analyses, such as differential gene expression analysis, metabolic pathway exploration, metabolic flux analysis, GO and KEGG enrichment analysis, survival analysis, immune signature analysis, single nucleotide variation analysis, dynamic analysis of gene expression changes and gene regulatory network changes, and protein structure prediction. Cancer target evaluation by Cat-E is demonstrated here on lung adenocarcinoma (LUAD) datasets. By offering a user-friendly interface and detailed user manual, Cat-E eliminates the need for advanced computational expertise, making it accessible to experimental biologists, undergraduate and graduate students, and oncology clinicians. It serves as a valuable tool for investigating genetic variations across diverse cancer types, facilitating the identification of novel diagnostic markers and potential therapeutic targets.
Collapse
Affiliation(s)
- Rana Salihoglu
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
| | - Johannes Balkenhol
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University Hospital of Wurzburg, 97080 Wurzburg, Germany
| | - Gudrun Dandekar
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital of Wurzburg, 97080 Wurzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
- Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, University of Wurzburg, 97074 Wurzburg, Germany
| |
Collapse
|
3
|
Chang M, Li D, Su L, Ding C, Lu Z, Gao H, Sun F. Nephroblastoma-specific dysregulated gene SNHG15 with prognostic significance: scRNA-Seq with bulk RNA-Seq data and experimental validation. Discov Oncol 2024; 15:87. [PMID: 38526609 DOI: 10.1007/s12672-024-00946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Abstract
Wilms tumor (WT) is the most common malignancy of the genitourinary system in children. Currently, the Integration of single-cell RNA sequencing (scRNA-Seq) and Bulk RNA sequencing (RNA-Seq) analysis of heterogeneity between different cell types in pediatric WT tissues could more accurately find prognostic markers, but this is lacking. RNA-Seq and clinical data related to WT were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Small nucleolar RNA host gene 15 (SNHG15) was identified as a risk signature from the TARGET dataset by using weighted gene co-expression network analysis, differentially expressed analysis and univariate Cox analysis. After that, the functional mechanisms, immunological and molecular characterization of SNHG15 were investigated at the scRNA-seq, pan-cancer, and RNA-seq levels using Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), ESTIMATE, and CIBERSORT. Based on scRNA-seq data, we identified 20 clusters in WT and annotated 10 cell types. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing M2 macrophages as hubs for intercellular communication. In addition, in vitro cellular experiments showed that siRNAs interfering with SNHG15 significantly inhibited the proliferation and migration of G401 cells and promoted the apoptosis of G401 cells compared with the control group. The effect of siRNAs interfering with SNHG15 on EMT-related protein expression was verified by Western blotting assay. Thus, our findings will improve our current understanding of the pathogenesis of WT, and they are potentially valuable in providing novel prognosis markers for the treatment of WT.
Collapse
Affiliation(s)
- Mengmeng Chang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ding Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Li Su
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Ding
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Zhiyi Lu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Hongjie Gao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.
| | - Fengyin Sun
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Foster DS, Januszyk M, Delitto D, Yost KE, Griffin M, Guo J, Guardino N, Delitto AE, Chinta M, Burcham AR, Nguyen AT, Bauer-Rowe KE, Titan AL, Salhotra A, Jones RE, da Silva O, Lindsay HG, Berry CE, Chen K, Henn D, Mascharak S, Talbott HE, Kim A, Nosrati F, Sivaraj D, Ransom RC, Matthews M, Khan A, Wagh D, Coller J, Gurtner GC, Wan DC, Wapnir IL, Chang HY, Norton JA, Longaker MT. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 2022; 40:1392-1406.e7. [PMID: 36270275 PMCID: PMC9669239 DOI: 10.1016/j.ccell.2022.09.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 01/09/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are integral to the solid tumor microenvironment. CAFs were once thought to be a relatively uniform population of matrix-producing cells, but single-cell RNA sequencing has revealed diverse CAF phenotypes. Here, we further probed CAF heterogeneity with a comprehensive multiomics approach. Using paired, same-cell chromatin accessibility and transcriptome analysis, we provided an integrated analysis of CAF subpopulations over a complex spatial transcriptomic and proteomic landscape to identify three superclusters: steady state-like (SSL), mechanoresponsive (MR), and immunomodulatory (IM) CAFs. These superclusters are recapitulated across multiple tissue types and species. Selective disruption of underlying mechanical force or immune checkpoint inhibition therapy results in shifts in CAF subpopulation distributions and affected tumor growth. As such, the balance among CAF superclusters may have considerable translational implications. Collectively, this research expands our understanding of CAF biology, identifying regulatory pathways in CAF differentiation and elucidating therapeutic targets in a species- and tumor-agnostic manner.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Guardino
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrea E Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Malini Chinta
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Austin R Burcham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan T Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Khristian E Bauer-Rowe
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley L Titan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar da Silva
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hunter G Lindsay
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E Talbott
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexia Kim
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fatemeh Nosrati
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dharshan Sivaraj
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - R Chase Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Matthews
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA 94305, USA
| | - Dhananjay Wagh
- Stanford Genomics Facility, Stanford University, Stanford, CA 94305, USA
| | - John Coller
- Stanford Genomics Facility, Stanford University, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Irene L Wapnir
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Jeffrey A Norton
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA.
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|