1
|
Qiao Y, Yang R, Liu Y, Chen J, Zhao L, Huo P, Wang Z, Bu D, Wu Y, Zhao Y. DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures. Comput Struct Biotechnol J 2024; 23:617-625. [PMID: 38274994 PMCID: PMC10808905 DOI: 10.1016/j.csbj.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) are key post-transcriptional regulators, and the malfunctions of RBP-RNA binding lead to diverse human diseases. However, prediction of RBP binding sites is largely based on RNA sequence features, whereas in vivo RNA structural features based on high-throughput sequencing are rarely incorporated. Here, we designed a deep bimodal information fusion network called DeepFusion for unraveling protein-RNA interactions by incorporating structural features derived from DMS-seq data. DeepFusion integrates two sub-models to extract local motif-like information and long-term context information. We show that DeepFusion performs best compared with other cutting-edge methods with only sequence inputs on two datasets. DeepFusion's performance is further improved with bimodal input after adding in vivo DMS-seq structural features. Furthermore, DeepFusion can be used for analyzing RNA degradation, demonstrating significantly different RBP-binding scores in genes with slow degradation rates versus those with rapid degradation rates. DeepFusion thus provides enhanced abilities for further analysis of functional RNAs. DeepFusion's code and data are available at http://bioinfo.org/deepfusion/.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yang
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Chen
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Lianhe Zhao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Peipei Huo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihao Wang
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yang B, Wang YW, Zhang K. Interactions between circRNA and protein in breast cancer. Gene 2024; 895:148019. [PMID: 37984538 DOI: 10.1016/j.gene.2023.148019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Circular RNA (circRNA) is a newly discovered endogenous non-coding RNA that plays important roles in the occurrence and development of various cancers. Current research indicates that circRNA can inhibit the function of miRNA by acting as an miRNA sponge, interacting with proteins, and being translated into proteins. Most current research focuses on the circRNA-miRNA interaction; however, few studies have investigated the interaction between circRNAs and RNA binding proteins (RBPs) in breast cancer. In this review, we systematically summarize the potential molecular mechanism of the circRNA-protein interaction in breast cancer. Specifically, we elaborate on the direct interaction between circRNAs and proteins in breast cancer, including the functions of circRNA as protein sponges, decoys, and scaffolds, thereby affecting the progression of breast cancer. We also discuss the indirect interaction between circRNAs and proteins in breast cancer in which RBPs, transcription factors and m6A modifying enzymes could in turn regulate the expression and formation of circRNA. Finally, we discuss the potential application of circRNA-protein interaction for treating breast cancer, providing a reference for further research in this field.
Collapse
Affiliation(s)
- Bin Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Kai Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Mou M, Pan Z, Zhou Z, Zheng L, Zhang H, Shi S, Li F, Sun X, Zhu F. A Transformer-Based Ensemble Framework for the Prediction of Protein-Protein Interaction Sites. RESEARCH (WASHINGTON, D.C.) 2023; 6:0240. [PMID: 37771850 PMCID: PMC10528219 DOI: 10.34133/research.0240] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
The identification of protein-protein interaction (PPI) sites is essential in the research of protein function and the discovery of new drugs. So far, a variety of computational tools based on machine learning have been developed to accelerate the identification of PPI sites. However, existing methods suffer from the low predictive accuracy or the limited scope of application. Specifically, some methods learned only global or local sequential features, leading to low predictive accuracy, while others achieved improved performance by extracting residue interactions from structures but were limited in their application scope for the serious dependence on precise structure information. There is an urgent need to develop a method that integrates comprehensive information to realize proteome-wide accurate profiling of PPI sites. Herein, a novel ensemble framework for PPI sites prediction, EnsemPPIS, was therefore proposed based on transformer and gated convolutional networks. EnsemPPIS can effectively capture not only global and local patterns but also residue interactions. Specifically, EnsemPPIS was unique in (a) extracting residue interactions from protein sequences with transformer and (b) further integrating global and local sequential features with the ensemble learning strategy. Compared with various existing methods, EnsemPPIS exhibited either superior performance or broader applicability on multiple PPI sites prediction tasks. Moreover, pattern analysis based on the interpretability of EnsemPPIS demonstrated that EnsemPPIS was fully capable of learning residue interactions within the local structure of PPI sites using only sequence information. The web server of EnsemPPIS is freely available at http://idrblab.org/ensemppis.
Collapse
Affiliation(s)
- Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhimeng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
4
|
Li F, Liu S, Li K, Zhang Y, Duan M, Yao Z, Zhu G, Guo Y, Wang Y, Huang L, Zhou F. EpiTEAmDNA: Sequence feature representation via transfer learning and ensemble learning for identifying multiple DNA epigenetic modification types across species. Comput Biol Med 2023; 160:107030. [PMID: 37196456 DOI: 10.1016/j.compbiomed.2023.107030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Methylation is a major DNA epigenetic modification for regulating the biological processes without altering the DNA sequence, and multiple types of DNA methylations have been discovered, including 6mA, 5hmC, and 4mC. Multiple computational approaches were developed to automatically identify the DNA methylation residues using machine learning or deep learning algorithms. The machine learning (ML) based methods are difficult to be transferred to the other predicting tasks of the DNA methylation sites using additional knowledge. Deep learning (DL) may facilitate the transfer learning of knowledge from similar tasks, but they are often ineffective on small datasets. This study proposes an integrated feature representation framework EpiTEAmDNA based on the strategies of transfer learning and ensemble learning, which is evaluated on multiple DNA methylation types across 15 species. EpiTEAmDNA integrates convolutional neural network (CNN) and conventional machine learning methods, and shows improved performances than the existing DL-based methods on small datasets when no additional knowledge is available. The experimental data suggests that the EpiTEAmDNA models may be further improved via transfer learning based on additional knowledge. The evaluation experiments on the independent test datasets also suggest that the proposed EpiTEAmDNA framework outperforms the existing models in most prediction tasks of the 3 DNA methylation types across 15 species. The source code, pre-trained global model, and the EpiTEAmDNA feature representation framework are freely available at http://www.healthinformaticslab.org/supp/.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Shuai Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Kewei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yaqi Zhang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Meiyu Duan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| | - Zhaomin Yao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110167, China
| | - Gancheng Zhu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yutong Guo
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Ying Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
5
|
Yan Y, Huang T. The Interactome of Protein, DNA, and RNA. Methods Mol Biol 2023; 2695:89-110. [PMID: 37450113 DOI: 10.1007/978-1-0716-3346-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Proteins participate in many processes of the organism and are very important for maintaining the health of the organism. However, proteins cannot function independently in the body. They must interact with proteins, DNA, RNA, and other substances to perform biological functions and maintain the body's health. At present, there are many experimental methods and software tools that can detect and predict the interaction between proteins and other substances. There are also many databases that record the interaction between proteins and other substances. This article mainly describes protein-protein, protein-DNA, and protein-RNA interactions in detail by introducing some commonly used experimental methods, the software tools produced with the accumulation of experimental data and the rapid development of machine learning, and the related databases that record the relationship between proteins and some substances. By this review, we hope that through the analysis and summary of various aspects, it will be convenient for researchers to conduct further research on protein interactions.
Collapse
Affiliation(s)
- Yuyao Yan
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Bheemireddy S, Sandhya S, Srinivasan N, Sowdhamini R. Computational tools to study RNA-protein complexes. Front Mol Biosci 2022; 9:954926. [PMID: 36275618 PMCID: PMC9585174 DOI: 10.3389/fmolb.2022.954926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
RNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein–RNA interactions are still poorly derstood in contrast to protein–protein and protein–DNA interactions. This knowledge gap can be attributed to the limited availability of protein-RNA structures along with the experimental difficulties in studying these complexes. Recent progress in computational resources has expanded the number of tools available for studying protein-RNA interactions at various molecular levels. These include tools for predicting interacting residues from primary sequences, modelling of protein-RNA complexes, predicting hotspots in these complexes and insights into derstanding in the dynamics of their interactions. Each of these tools has its strengths and limitations, which makes it significant to select an optimal approach for the question of interest. Here we present a mini review of computational tools to study different aspects of protein-RNA interactions, with focus on overall application, development of the field and the future perspectives.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sankaran Sandhya
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| | | | - Ramanathan Sowdhamini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| |
Collapse
|
7
|
DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites. BMC Bioinformatics 2022; 23:257. [PMID: 35768792 PMCID: PMC9241231 DOI: 10.1186/s12859-022-04798-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Addressing the laborious nature of traditional biological experiments by using an efficient computational approach to analyze RNA-binding proteins (RBPs) binding sites has always been a challenging task. RBPs play a vital role in post-transcriptional control. Identification of RBPs binding sites is a key step for the anatomy of the essential mechanism of gene regulation by controlling splicing, stability, localization and translation. Traditional methods for detecting RBPs binding sites are time-consuming and computationally-intensive. Recently, the computational method has been incorporated in researches of RBPs. Nevertheless, lots of them not only rely on the sequence data of RNA but also need additional data, for example the secondary structural data of RNA, to improve the performance of prediction, which needs the pre-work to prepare the learnable representation of structural data. Results To reduce the dependency of those pre-work, in this paper, we introduce DeepPN, a deep parallel neural network that is constructed with a convolutional neural network (CNN) and graph convolutional network (GCN) for detecting RBPs binding sites. It includes a two-layer CNN and GCN in parallel to extract the hidden features, followed by a fully connected layer to make the prediction. DeepPN discriminates the RBP binding sites on learnable representation of RNA sequences, which only uses the sequence data without using other data, for example the secondary or tertiary structure data of RNA. DeepPN is evaluated on 24 datasets of RBPs binding sites with other state-of-the-art methods. The results show that the performance of DeepPN is comparable to the published methods. Conclusion The experimental results show that DeepPN can effectively capture potential hidden features in RBPs and use these features for effective prediction of binding sites.
Collapse
|
8
|
A Comprehensive Review of Computation-Based Metal-Binding Prediction Approaches at the Residue Level. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8965712. [PMID: 35402609 PMCID: PMC8989566 DOI: 10.1155/2022/8965712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
Clear evidence has shown that metal ions strongly connect and delicately tune the dynamic homeostasis in living bodies. They have been proved to be associated with protein structure, stability, regulation, and function. Even small changes in the concentration of metal ions can shift their effects from natural beneficial functions to harmful. This leads to degenerative diseases, malignant tumors, and cancers. Accurate characterizations and predictions of metalloproteins at the residue level promise informative clues to the investigation of intrinsic mechanisms of protein-metal ion interactions. Compared to biophysical or biochemical wet-lab technologies, computational methods provide open web interfaces of high-resolution databases and high-throughput predictors for efficient investigation of metal-binding residues. This review surveys and details 18 public databases of metal-protein binding. We collect a comprehensive set of 44 computation-based methods and classify them into four categories, namely, learning-, docking-, template-, and meta-based methods. We analyze the benchmark datasets, assessment criteria, feature construction, and algorithms. We also compare several methods on two benchmark testing datasets and include a discussion about currently publicly available predictive tools. Finally, we summarize the challenges and underlying limitations of the current studies and propose several prospective directions concerning the future development of the related databases and methods.
Collapse
|