1
|
Kagan D, Jubran J, Yeger-Lotem E, Fire M. Network-based anomaly detection algorithm reveals proteins with major roles in human tissues. Gigascience 2025; 14:giaf034. [PMID: 40197822 PMCID: PMC11976396 DOI: 10.1093/gigascience/giaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/27/2024] [Accepted: 03/05/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Proteins act through physical interactions with other molecules to maintain organismal health. Protein-protein interaction (PPI) networks have proved to be a powerful framework for obtaining insight into protein functions, cellular organization, response to signals, and disease states. In multicellular organisms, protein content varies between tissues, influencing tissue morphology and function. Weighted PPI networks, reflecting the likelihood of interactions in specific tissues, offer insights into tissue-specific processes and disease mechanisms. We hypothesized that detecting anomalous nodes in these networks could reveal proteins with key tissue-specific functions. RESULTS Here, we introduce Weighted Graph Anomalous Node Detection (WGAND), a novel machine-learning algorithm to identify anomalous nodes in weighted graphs. WGAND estimates expected edge weights and uses deviations to generate anomaly detection features, which are then used to score network nodes. We applied WGAND to weighted PPI networks of 17 human tissues. High-ranking anomalous nodes were enriched for proteins associated with tissue-specific diseases and tissue-specific biological processes, such as neuron signaling in the brain and spermatogenesis in the testis. WGAND outperformed other methods in terms of area under the ROC curve and precision at K, highlighting its effectiveness in uncovering biologically meaningful anomalies. CONCLUSIONS Our findings demonstrate WGAND's potential as a powerful tool for detecting anomalous proteins with significant biological roles. By identifying proteins involved in critical tissue-specific processes and diseases, WGAND offers valuable insights for discovering novel biomarkers and therapeutic targets. Its versatile algorithm is suitable for any weighted graph and is broadly applicable across various fields. The WGAND algorithm is available as an open-source Python library at https://github.com/data4goodlab/wgand.
Collapse
Affiliation(s)
- Dima Kagan
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Juman Jubran
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Michael Fire
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
2
|
Alías-Segura S, Pazos F, Chagoyen M. Differential expression and co-expression reveal cell types relevant to genetic disorder phenotypes. Bioinformatics 2024; 40:btae646. [PMID: 39468724 PMCID: PMC11549017 DOI: 10.1093/bioinformatics/btae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024] Open
Abstract
MOTIVATION Knowledge of the specific cell types affected by genetic alterations in rare diseases is crucial for advancing diagnostics and treatments. Despite significant progress, the cell types involved in the majority of rare disease manifestations remain largely unknown. In this study, we integrated scRNA-seq data from non-diseased samples with known genetic disorder genes and phenotypic information to predict the specific cell types disrupted by pathogenic mutations for 482 disease phenotypes. RESULTS We found significant phenotype-cell type associations focusing on differential expression and co-expression mechanisms. Our analysis revealed that 13% of the associations documented in the literature were captured through differential expression, while 42% were elucidated through co-expression analysis, also uncovering potential new associations. These findings underscore the critical role of cellular context in disease manifestation and highlight the potential of single-cell data for the development of cell-aware diagnostics and targeted therapies for rare diseases. AVAILABILITY AND IMPLEMENTATION All code generated in this work is available at https://github.com/SergioAlias/sc-coex.
Collapse
Affiliation(s)
- Sergio Alías-Segura
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
- Department of Molecular Biology and Biochemistry, Science Faculty, University of Málaga, Málaga, 29071, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Monica Chagoyen
- Computational Systems Biology Group, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
3
|
Argov CM, Shneyour A, Jubran J, Sabag E, Mansbach A, Sepunaru Y, Filtzer E, Gruber G, Volozhinsky M, Yogev Y, Birk O, Chalifa-Caspi V, Rokach L, Yeger-Lotem E. Tissue-aware interpretation of genetic variants advances the etiology of rare diseases. Mol Syst Biol 2024; 20:1187-1206. [PMID: 39285047 PMCID: PMC11535248 DOI: 10.1038/s44320-024-00061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Pathogenic variants underlying Mendelian diseases often disrupt the normal physiology of a few tissues and organs. However, variant effect prediction tools that aim to identify pathogenic variants are typically oblivious to tissue contexts. Here we report a machine-learning framework, denoted "Tissue Risk Assessment of Causality by Expression for variants" (TRACEvar, https://netbio.bgu.ac.il/TRACEvar/ ), that offers two advancements. First, TRACEvar predicts pathogenic variants that disrupt the normal physiology of specific tissues. This was achieved by creating 14 tissue-specific models that were trained on over 14,000 variants and combined 84 attributes of genetic variants with 495 attributes derived from tissue omics. TRACEvar outperformed 10 well-established and tissue-oblivious variant effect prediction tools. Second, the resulting models are interpretable, thereby illuminating variants' mode of action. Application of TRACEvar to variants of 52 rare-disease patients highlighted pathogenicity mechanisms and relevant disease processes. Lastly, the interpretation of all tissue models revealed that top-ranking determinants of pathogenicity included attributes of disease-affected tissues, particularly cellular process activities. Collectively, these results show that tissue contexts and interpretable machine-learning models can greatly enhance the etiology of rare diseases.
Collapse
Affiliation(s)
- Chanan M Argov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ariel Shneyour
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Juman Jubran
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Eric Sabag
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Avigdor Mansbach
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yair Sepunaru
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Emmi Filtzer
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Gil Gruber
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Miri Volozhinsky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yuval Yogev
- Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ohad Birk
- Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Vered Chalifa-Caspi
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Lior Rokach
- Department of Software & Information Systems Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
4
|
Jubran J, Slutsky R, Rozenblum N, Rokach L, Ben-David U, Yeger-Lotem E. Machine-learning analysis reveals an important role for negative selection in shaping cancer aneuploidy landscapes. Genome Biol 2024; 25:95. [PMID: 38622679 PMCID: PMC11020441 DOI: 10.1186/s13059-024-03225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Aneuploidy, an abnormal number of chromosomes within a cell, is a hallmark of cancer. Patterns of aneuploidy differ across cancers, yet are similar in cancers affecting closely related tissues. The selection pressures underlying aneuploidy patterns are not fully understood, hindering our understanding of cancer development and progression. RESULTS Here, we apply interpretable machine learning methods to study tissue-selective aneuploidy patterns. We define 20 types of features corresponding to genomic attributes of chromosome-arms, normal tissues, primary tumors, and cancer cell lines (CCLs), and use them to model gains and losses of chromosome arms in 24 cancer types. To reveal the factors that shape the tissue-specific cancer aneuploidy landscapes, we interpret the machine learning models by estimating the relative contribution of each feature to the models. While confirming known drivers of positive selection, our quantitative analysis highlights the importance of negative selection for shaping aneuploidy landscapes. This is exemplified by tumor suppressor gene density being a better predictor of gain patterns than oncogene density, and vice versa for loss patterns. We also identify the importance of tissue-selective features and demonstrate them experimentally, revealing KLF5 as an important driver for chr13q gain in colon cancer. Further supporting an important role for negative selection in shaping the aneuploidy landscapes, we find compensation by paralogs to be among the top predictors of chromosome arm loss prevalence and demonstrate this relationship for one paralog interaction. Similar factors shape aneuploidy patterns in human CCLs, demonstrating their relevance for aneuploidy research. CONCLUSIONS Our quantitative, interpretable machine learning models improve the understanding of the genomic properties that shape cancer aneuploidy landscapes.
Collapse
Affiliation(s)
- Juman Jubran
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Rachel Slutsky
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Rozenblum
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Rokach
- Department of Software & Information Systems Engineering, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
5
|
Frost HR. Tissue-adjusted pathway analysis of cancer (TPAC): A novel approach for quantifying tumor-specific gene set dysregulation relative to normal tissue. PLoS Comput Biol 2024; 20:e1011717. [PMID: 38206988 PMCID: PMC10807770 DOI: 10.1371/journal.pcbi.1011717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/24/2024] [Accepted: 11/27/2023] [Indexed: 01/13/2024] Open
Abstract
We describe a novel single sample gene set testing method for cancer transcriptomics data named tissue-adjusted pathway analysis of cancer (TPAC). The TPAC method leverages information about the normal tissue-specificity of human genes to compute a robust multivariate distance score that quantifies gene set dysregulation in each profiled tumor. Because the null distribution of the TPAC scores has an accurate gamma approximation, both population and sample-level inference is supported. As we demonstrate through an analysis of gene expression data for 21 solid human cancers from The Cancer Genome Atlas (TCGA) and associated normal tissue expression data from the Human Protein Atlas (HPA), TPAC gene set scores are more strongly associated with patient prognosis than the scores generated by existing single sample gene set testing methods.
Collapse
Affiliation(s)
- H. Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States of America
| |
Collapse
|
6
|
Simonovsky E, Sharon M, Ziv M, Mauer O, Hekselman I, Jubran J, Vinogradov E, Argov CM, Basha O, Kerber L, Yogev Y, Segrè AV, Im HK, GTEx Consortium, Birk O, Rokach L, Yeger‐Lotem E. Predicting molecular mechanisms of hereditary diseases by using their tissue-selective manifestation. Mol Syst Biol 2023; 19:e11407. [PMID: 37232043 PMCID: PMC10407743 DOI: 10.15252/msb.202211407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
How do aberrations in widely expressed genes lead to tissue-selective hereditary diseases? Previous attempts to answer this question were limited to testing a few candidate mechanisms. To answer this question at a larger scale, we developed "Tissue Risk Assessment of Causality by Expression" (TRACE), a machine learning approach to predict genes that underlie tissue-selective diseases and selectivity-related features. TRACE utilized 4,744 biologically interpretable tissue-specific gene features that were inferred from heterogeneous omics datasets. Application of TRACE to 1,031 disease genes uncovered known and novel selectivity-related features, the most common of which was previously overlooked. Next, we created a catalog of tissue-associated risks for 18,927 protein-coding genes (https://netbio.bgu.ac.il/trace/). As proof-of-concept, we prioritized candidate disease genes identified in 48 rare-disease patients. TRACE ranked the verified disease gene among the patient's candidate genes significantly better than gene prioritization methods that rank by gene constraint or tissue expression. Thus, tissue selectivity combined with machine learning enhances genetic and clinical understanding of hereditary diseases.
Collapse
Affiliation(s)
- Eyal Simonovsky
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Moran Sharon
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Maya Ziv
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Omry Mauer
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Idan Hekselman
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Juman Jubran
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Ekaterina Vinogradov
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Chanan M Argov
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Omer Basha
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Lior Kerber
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Yuval Yogev
- Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
| | - Ayellet V Segrè
- Ocular Genomics Institute, Massachusetts Eye and EarHarvard Medical SchoolBostonMAUSA
- The Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of MedicineThe University of ChicagoChicagoILUSA
| | | | - Ohad Birk
- Morris Kahn Laboratory of Human Genetics and the Genetics Institute at Soroka Medical Center, Faculty of Health SciencesBen Gurion University of the NegevBeer ShevaIsrael
- The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Lior Rokach
- Department of Software & Information Systems EngineeringBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Esti Yeger‐Lotem
- Department of Clinical Biochemistry and PharmacologyBen‐Gurion University of the NegevBeer ShevaIsrael
- The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
7
|
Sharon M, Gruber G, Argov CM, Volozhinsky M, Yeger-Lotem E. ProAct: quantifying the differential activity of biological processes in tissues, cells, and user-defined contexts. Nucleic Acids Res 2023:7173756. [PMID: 37207335 DOI: 10.1093/nar/gkad421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
The distinct functions and phenotypes of human tissues and cells derive from the activity of biological processes that varies in a context-dependent manner. Here, we present the Process Activity (ProAct) webserver that estimates the preferential activity of biological processes in tissues, cells, and other contexts. Users can upload a differential gene expression matrix measured across contexts or cells, or use a built-in matrix of differential gene expression in 34 human tissues. Per context, ProAct associates gene ontology (GO) biological processes with estimated preferential activity scores, which are inferred from the input matrix. ProAct visualizes these scores across processes, contexts, and process-associated genes. ProAct also offers potential cell-type annotations for cell subsets, by inferring them from the preferential activity of 2001 cell-type-specific processes. Thus, ProAct output can highlight the distinct functions of tissues and cell types in various contexts, and can enhance cell-type annotation efforts. The ProAct webserver is available at https://netbio.bgu.ac.il/ProAct/.
Collapse
Affiliation(s)
- Moran Sharon
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653 Beer-Sheva 8410501, Israel
| | - Gil Gruber
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653 Beer-Sheva 8410501, Israel
| | - Chanan M Argov
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653 Beer-Sheva 8410501, Israel
| | - Miri Volozhinsky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653 Beer-Sheva 8410501, Israel
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653 Beer-Sheva 8410501, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, POB 653 Beer-Sheva 8410501, Israel
| |
Collapse
|
8
|
Hekselman I, Kerber L, Ziv M, Gruber G, Yeger-Lotem E. The Organ-Disease Annotations (ODiseA) database of hereditary diseases and inflicted tissues. J Mol Biol 2022; 434:167619. [PMID: 35504357 DOI: 10.1016/j.jmb.2022.167619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Hereditary diseases tend to manifest clinically in few selected tissues. Knowledge of those tissues is important for better understanding of disease mechanisms, which often remain elusive. However, information on the tissues inflicted by each disease is not easily obtainable. Well-established resources, such as the Online Mendelian Inheritance in Man (OMIM) database and Human Phenotype Ontology (HPO), report on a spectrum of disease manifestations, yet do not highlight the main inflicted tissues. The Organ-Disease Annotations (ODiseA) database contains 4,357 thoroughly-curated annotations for 2,181 hereditary diseases and 45 inflicted tissues. Additionally, ODiseA reports 692 annotations of 635 diseases and the pathogenic tissues where they emerge. ODiseA can be queried by disease, disease gene, or inflicted tissue. Owing to its expansive, high-quality annotations, ODiseA serves as a valuable and unique tool for biomedical and computational researchers studying genotype-phenotype relationships of hereditary diseases. ODiseA is available at https://netbio.bgu.ac.il/odisea.
Collapse
Affiliation(s)
- Idan Hekselman
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Lior Kerber
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Maya Ziv
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Gil Gruber
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Be'er Sheva, Israel; The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| |
Collapse
|
9
|
Ziv M, Gruber G, Sharon M, Vinogradov E, Yeger-Lotem E. The TissueNet v.3 database: Protein-protein interactions in adult and embryonic human tissue contexts. J Mol Biol 2022; 434:167532. [DOI: 10.1016/j.jmb.2022.167532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
|