1
|
Li Y, Tian Z, Nan X, Zhang S, Zhou Q, Lu S. HSSPPI: hierarchical and spatial-sequential modeling for PPIs prediction. Brief Bioinform 2025; 26:bbaf079. [PMID: 40037640 PMCID: PMC11879409 DOI: 10.1093/bib/bbaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
MOTIVATION Protein-protein interactions play a fundamental role in biological systems. Accurate detection of protein-protein interaction sites (PPIs) remains a challenge. And, the methods of PPIs prediction based on biological experiments are expensive. Recently, a lot of computation-based methods have been developed and made great progress. However, current computational methods only focus on one form of protein, using only protein spatial conformation or primary sequence. And, the protein's natural hierarchical structure is ignored. RESULTS In this study, we propose a novel network architecture, HSSPPI, through hierarchical and spatial-sequential modeling of protein for PPIs prediction. In this network, we represent protein as a hierarchical graph, in which a node in the protein is a residue (residue-level graph) and a node in the residue is an atom (atom-level graph). Moreover, we design a spatial-sequential block for capturing complex interaction relationships from spatial and sequential forms of protein. We evaluate HSSPPI on public benchmark datasets and the predicting results outperform the comparative models. This indicates the effectiveness of hierarchical protein modeling and also illustrates that HSSPPI has a strong feature extraction ability by considering spatial and sequential information simultaneously. AVAILABILITY AND IMPLEMENTATION The code of HSSPPI is available at https://github.com/biolushuai/Hierarchical-Spatial-Sequential-Modeling-of-Protein.
Collapse
Affiliation(s)
- Yuguang Li
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, Henan, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, Zhejiang, China
| | - Xiaofei Nan
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
- Zhongyuan Intelligent Medical Laboratory, Zhengzhou 450001, Henan, China
| | - Qinglei Zhou
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuai Lu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, Henan, China
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
2
|
Thomas DPG, Garcia Fernandez CM, Haydarlou R, Feenstra KA. PIPENN-EMB ensemble net and protein embeddings generalise protein interface prediction beyond homology. Sci Rep 2025; 15:4391. [PMID: 39910126 PMCID: PMC11799512 DOI: 10.1038/s41598-025-88445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Protein interactions are crucial for understanding biological functions and disease mechanisms, but predicting these remains a complex task in computational biology. Increasingly, Deep Learning models are having success in interface prediction. This study presents PIPENN-EMB which explores the added value of using embeddings from the ProtT5-XL protein language model. Our results show substantial improvement over the previously published PIPENN model for protein interaction interface prediction, reaching an MCC of 0.313 vs. 0.249, and AUROC 0.800 vs. 0.755 on the BIO_DL_TE test set. We furthermore show that these embeddings cover a broad range of 'hand-crafted' protein features in ablation studies. PIPENN-EMB reaches state-of-the-art performance on the ZK448 dataset for protein-protein interface prediction. We showcase predictions on 25 resistance-related proteins from Mycobacterium tuberculosis. Furthermore, whereas other state-of-the-art sequence-based methods perform worse for proteins that have little recognisable homology in their training data, PIPENN-EMB generalises to remote homologs, yielding stable AUROC across all three test sets with less than 30% sequence identity to the training dataset, and even to proteins with less than 15% sequence identity.
Collapse
Affiliation(s)
- David P G Thomas
- Department of Computer Science, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands
| | | | - Reza Haydarlou
- Department of Computer Science, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands.
| | - K Anton Feenstra
- Department of Computer Science, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, The Netherlands.
- AIMMS - Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Li Y, Nan X, Zhang S, Zhou Q, Lu S, Tian Z. PMSFF: Improved Protein Binding Residues Prediction through Multi-Scale Sequence-Based Feature Fusion Strategy. Biomolecules 2024; 14:1220. [PMID: 39456153 PMCID: PMC11506650 DOI: 10.3390/biom14101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Proteins perform different biological functions through binding with various molecules which are mediated by a few key residues and accurate prediction of such protein binding residues (PBRs) is crucial for understanding cellular processes and for designing new drugs. Many computational prediction approaches have been proposed to identify PBRs with sequence-based features. However, these approaches face two main challenges: (1) these methods only concatenate residue feature vectors with a simple sliding window strategy, and (2) it is challenging to find a uniform sliding window size suitable for learning embeddings across different types of PBRs. In this study, we propose one novel framework that could apply multiple types of PBRs Prediciton task through Multi-scale Sequence-based Feature Fusion (PMSFF) strategy. Firstly, PMSFF employs a pre-trained language model named ProtT5, to encode amino acid residues in protein sequences. Then, it generates multi-scale residue embeddings by applying multi-size windows to capture effective neighboring residues and multi-size kernels to learn information across different scales. Additionally, the proposed model treats protein sequences as sentences, employing a bidirectional GRU to learn global context. We also collect benchmark datasets encompassing various PBRs types and evaluate our PMSFF approach to these datasets. Compared with state-of-the-art methods, PMSFF demonstrates superior performance on most PBRs prediction tasks.
Collapse
Affiliation(s)
- Yuguang Li
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.N.); (Q.Z.)
| | - Xiaofei Nan
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.N.); (Q.Z.)
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
- Longhu Laboratory of Advanced Immunology, Zhengzhou 450001, China
| | - Qinglei Zhou
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.N.); (Q.Z.)
| | - Shuai Lu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.N.); (Q.Z.)
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen Tian
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.N.); (Q.Z.)
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China
| |
Collapse
|
4
|
Tran HN, Nguyen PXQ, Guo F, Wang J. Prediction of Protein-Protein Interactions Based on Integrating Deep Learning and Feature Fusion. Int J Mol Sci 2024; 25:5820. [PMID: 38892007 PMCID: PMC11172432 DOI: 10.3390/ijms25115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Understanding protein-protein interactions (PPIs) helps to identify protein functions and develop other important applications such as drug preparation and protein-disease relationship identification. Deep-learning-based approaches are being intensely researched for PPI determination to reduce the cost and time of previous testing methods. In this work, we integrate deep learning with feature fusion, harnessing the strengths of both approaches, handcrafted features, and protein sequence embedding. The accuracies of the proposed model using five-fold cross-validation on Yeast core and Human datasets are 96.34% and 99.30%, respectively. In the task of predicting interactions in important PPI networks, our model correctly predicted all interactions in one-core, Wnt-related, and cancer-specific networks. The experimental results on cross-species datasets, including Caenorhabditis elegans, Helicobacter pylori, Homo sapiens, Mus musculus, and Escherichia coli, also show that our feature fusion method helps increase the generalization capability of the PPI prediction model.
Collapse
Affiliation(s)
| | | | | | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China (F.G.)
| |
Collapse
|
5
|
Hosseini S, Golding GB, Ilie L. Seq-InSite: sequence supersedes structure for protein interaction site prediction. Bioinformatics 2024; 40:btad738. [PMID: 38212995 PMCID: PMC10796176 DOI: 10.1093/bioinformatics/btad738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/17/2023] [Accepted: 01/10/2024] [Indexed: 01/13/2024] Open
Abstract
MOTIVATION Proteins accomplish cellular functions by interacting with each other, which makes the prediction of interaction sites a fundamental problem. As experimental methods are expensive and time consuming, computational prediction of the interaction sites has been studied extensively. Structure-based programs are the most accurate, while the sequence-based ones are much more widely applicable, as the sequences available outnumber the structures by two orders of magnitude. Ideally, we would like a tool that has the quality of the former and the applicability of the latter. RESULTS We provide here the first solution that achieves these two goals. Our new sequence-based program, Seq-InSite, greatly surpasses the performance of sequence-based models, matching the quality of state-of-the-art structure-based predictors, thus effectively superseding the need for models requiring structure. The predictive power of Seq-InSite is illustrated using an analysis of evolutionary conservation for four protein sequences. AVAILABILITY AND IMPLEMENTATION Seq-InSite is freely available as a web server at http://seq-insite.csd.uwo.ca/ and as free source code, including trained models and all datasets used for training and testing, at https://github.com/lucian-ilie/Seq-InSite.
Collapse
Affiliation(s)
- SeyedMohsen Hosseini
- Department of Computer Science, University of Western Ontario, London, ON N6A 5B7, Canada
| | - G Brian Golding
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Lucian Ilie
- Department of Computer Science, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
6
|
Lee M. Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review. Molecules 2023; 28:5169. [PMID: 37446831 DOI: 10.3390/molecules28135169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Deep learning, a potent branch of artificial intelligence, is steadily leaving its transformative imprint across multiple disciplines. Within computational biology, it is expediting progress in the understanding of Protein-Protein Interactions (PPIs), key components governing a wide array of biological functionalities. Hence, an in-depth exploration of PPIs is crucial for decoding the intricate biological system dynamics and unveiling potential avenues for therapeutic interventions. As the deployment of deep learning techniques in PPI analysis proliferates at an accelerated pace, there exists an immediate demand for an exhaustive review that encapsulates and critically assesses these novel developments. Addressing this requirement, this review offers a detailed analysis of the literature from 2021 to 2023, highlighting the cutting-edge deep learning methodologies harnessed for PPI analysis. Thus, this review stands as a crucial reference for researchers in the discipline, presenting an overview of the recent studies in the field. This consolidation helps elucidate the dynamic paradigm of PPI analysis, the evolution of deep learning techniques, and their interdependent dynamics. This scrutiny is expected to serve as a vital aid for researchers, both well-established and newcomers, assisting them in maneuvering the rapidly shifting terrain of deep learning applications in PPI analysis.
Collapse
Affiliation(s)
- Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Rogers JR, Nikolényi G, AlQuraishi M. Growing ecosystem of deep learning methods for modeling protein-protein interactions. Protein Eng Des Sel 2023; 36:gzad023. [PMID: 38102755 DOI: 10.1093/protein/gzad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Numerous cellular functions rely on protein-protein interactions. Efforts to comprehensively characterize them remain challenged however by the diversity of molecular recognition mechanisms employed within the proteome. Deep learning has emerged as a promising approach for tackling this problem by exploiting both experimental data and basic biophysical knowledge about protein interactions. Here, we review the growing ecosystem of deep learning methods for modeling protein interactions, highlighting the diversity of these biophysically informed models and their respective trade-offs. We discuss recent successes in using representation learning to capture complex features pertinent to predicting protein interactions and interaction sites, geometric deep learning to reason over protein structures and predict complex structures, and generative modeling to design de novo protein assemblies. We also outline some of the outstanding challenges and promising new directions. Opportunities abound to discover novel interactions, elucidate their physical mechanisms, and engineer binders to modulate their functions using deep learning and, ultimately, unravel how protein interactions orchestrate complex cellular behaviors.
Collapse
Affiliation(s)
- Julia R Rogers
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Gergő Nikolényi
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
8
|
ISPRED-SEQ: Deep neural networks and embeddings for predicting interaction sites in protein sequences. J Mol Biol 2023. [DOI: 10.1016/j.jmb.2023.167963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Hou Q, Waury K, Gogishvili D, Feenstra KA. Ten quick tips for sequence-based prediction of protein properties using machine learning. PLoS Comput Biol 2022; 18:e1010669. [PMID: 36454728 PMCID: PMC9714715 DOI: 10.1371/journal.pcbi.1010669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The ubiquitous availability of genome sequencing data explains the popularity of machine learning-based methods for the prediction of protein properties from their amino acid sequences. Over the years, while revising our own work, reading submitted manuscripts as well as published papers, we have noticed several recurring issues, which make some reported findings hard to understand and replicate. We suspect this may be due to biologists being unfamiliar with machine learning methodology, or conversely, machine learning experts may miss some of the knowledge needed to correctly apply their methods to proteins. Here, we aim to bridge this gap for developers of such methods. The most striking issues are linked to a lack of clarity: how were annotations of interest obtained; which benchmark metrics were used; how are positives and negatives defined. Others relate to a lack of rigor: If you sneak in structural information, your method is not sequence-based; if you compare your own model to "state-of-the-art," take the best methods; if you want to conclude that some method is better than another, obtain a significance estimate to support this claim. These, and other issues, we will cover in detail. These points may have seemed obvious to the authors during writing; however, they are not always clear-cut to the readers. We also expect many of these tips to hold for other machine learning-based applications in biology. Therefore, many computational biologists who develop methods in this particular subject will benefit from a concise overview of what to avoid and what to do instead.
Collapse
Affiliation(s)
- Qingzhen Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Shandong, P. R. China
- National Institute of Health Data Science of China, Shandong University, Shandong, P. R. China
| | - Katharina Waury
- Department of Computer Science, Bioinformatics Group, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Dea Gogishvili
- Department of Computer Science, Bioinformatics Group, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - K. Anton Feenstra
- Department of Computer Science, Bioinformatics Group, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Capel H, Weiler R, Dijkstra M, Vleugels R, Bloem P, Feenstra KA. ProteinGLUE multi-task benchmark suite for self-supervised protein modeling. Sci Rep 2022; 12:16047. [PMID: 36163232 PMCID: PMC9512797 DOI: 10.1038/s41598-022-19608-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Self-supervised language modeling is a rapidly developing approach for the analysis of protein sequence data. However, work in this area is heterogeneous and diverse, making comparison of models and methods difficult. Moreover, models are often evaluated only on one or two downstream tasks, making it unclear whether the models capture generally useful properties. We introduce the ProteinGLUE benchmark for the evaluation of protein representations: a set of seven per-amino-acid tasks for evaluating learned protein representations. We also offer reference code, and we provide two baseline models with hyperparameters specifically trained for these benchmarks. Pre-training was done on two tasks, masked symbol prediction and next sentence prediction. We show that pre-training yields higher performance on a variety of downstream tasks such as secondary structure and protein interaction interface prediction, compared to no pre-training. However, the larger base model does not outperform the smaller medium model. We expect the ProteinGLUE benchmark dataset introduced here, together with the two baseline pre-trained models and their performance evaluations, to be of great value to the field of protein sequence-based property prediction. Availability: code and datasets from https://github.com/ibivu/protein-glue .
Collapse
Affiliation(s)
- Henriette Capel
- Informatics Institute, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Robin Weiler
- Informatics Institute, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Maurits Dijkstra
- Informatics Institute, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Reinier Vleugels
- Informatics Institute, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - Peter Bloem
- Informatics Institute, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| | - K Anton Feenstra
- Informatics Institute, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
12
|
Multi-task learning to leverage partially annotated data for PPI interface prediction. Sci Rep 2022; 12:10487. [PMID: 35729253 PMCID: PMC9213449 DOI: 10.1038/s41598-022-13951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Protein protein interactions (PPI) are crucial for protein functioning, nevertheless predicting residues in PPI interfaces from the protein sequence remains a challenging problem. In addition, structure-based functional annotations, such as the PPI interface annotations, are scarce: only for about one-third of all protein structures residue-based PPI interface annotations are available. If we want to use a deep learning strategy, we have to overcome the problem of limited data availability. Here we use a multi-task learning strategy that can handle missing data. We start with the multi-task model architecture, and adapted it to carefully handle missing data in the cost function. As related learning tasks we include prediction of secondary structure, solvent accessibility, and buried residue. Our results show that the multi-task learning strategy significantly outperforms single task approaches. Moreover, only the multi-task strategy is able to effectively learn over a dataset extended with structural feature data, without additional PPI annotations. The multi-task setup becomes even more important, if the fraction of PPI annotations becomes very small: the multi-task learner trained on only one-eighth of the PPI annotations—with data extension—reaches the same performances as the single-task learner on all PPI annotations. Thus, we show that the multi-task learning strategy can be beneficial for a small training dataset where the protein’s functional properties of interest are only partially annotated.
Collapse
|