1
|
Guan H, Zhang P, Park RF, Ding Y. Genomics Research on the Road of Studying Biology and Virulence of Cereal Rust Fungi. MOLECULAR PLANT PATHOLOGY 2025; 26:e70082. [PMID: 40181494 PMCID: PMC11968332 DOI: 10.1111/mpp.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Rust fungi are highly destructive pathogens that pose a significant threat to crop production worldwide, especially cereals. Obligate biotrophy and, in many cases, complex life cycles make rust fungi particularly challenging to study. However, recent rapid advances in sequencing technologies and genomic analysis tools have revolutionised rust fungal research. It is anticipated that the increasing availability and ongoing substantial improvements in genome assemblies will propel the field of rust biology into the post-genomic era, instigating a cascade of research endeavours encompassing multi-omics and gene discoveries. This is especially the case for many cereal rust pathogens, for which continental-scale studies of virulence have been conducted over many years and historical collections of viable isolates have been sequenced and assembled. Genomic analysis plays a crucial role in uncovering the underlying causes of the high variability of virulence and the complexity of population dynamics in rust fungi. Here, we provide an overview of progress in rust genomics, discuss the strategies employed in genomic analysis, and elucidate the strides that will drive cereal rust biology into the post-genomic era.
Collapse
Affiliation(s)
- Haixia Guan
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Peng Zhang
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Robert F. Park
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Yi Ding
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| |
Collapse
|
2
|
He L, Zou Q, Dai Q, Cheng S, Wang Y. Adversarial regularized autoencoder graph neural network for microbe-disease associations prediction. Brief Bioinform 2024; 25:bbae584. [PMID: 39528423 PMCID: PMC11554402 DOI: 10.1093/bib/bbae584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Microorganisms inhabit various regions of the human body and significantly contribute to numerous diseases. Predicting the associations between microbes and diseases is crucial for understanding pathogenic mechanisms and informing prevention and treatment strategies. Biological experiments to determine these associations are time-consuming and costly. Therefore, integrating deep learning with biological networks can efficiently identify potential microbe-disease associations on a large scale. METHODS We propose an adversarial regularized autoencoder graph neural network algorithm, named Stacked Adversarial Regularization for Microbe-Disease Associations Prediction (SARMDA), for predicting associations between microbes and diseases. First, we integrate topological structural similarity and functional similarity metrics of microbes and diseases to construct a heterogeneous network. Then, utilizing an autoencoder based on GraphSAGE, we learn both the topological and attribute representations of nodes within the constructed network. Finally, we introduce an adversarial regularized autoencoder graph neural network embedding model to address the inherent limitations of traditional GraphSAGE autoencoders in capturing global information. RESULTS Under the five-fold cross-validation on microbe-disease pairs, SARMDA was compared with eight advanced methods using the Human Microbe-Disease Association Database (HMDAD) and Disbiome databases. The best area under the ROC curve (AUC) achieved by SARMDA on HMDAD was 0.9891$\pm$0.0057, and the best area under the precision-recall curve (AUPR) was 0.9902$\pm$0.0128. On the Disbiome dataset, the AUC was 0.9328$\pm$0.0072, and the best AUPR was 0.9233$\pm$0.0089, outperforming the other eight MDAs prediction methods. Furthermore, the effectiveness of our model was demonstrated through a detailed analysis of asthma and inflammatory bowel disease cases.
Collapse
Affiliation(s)
- Limuxuan He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Qingshuihe Campus, 2006 Xiyuan Avenue, West District, High-tech Zone, Chengdu, Sichuan 610054, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Qingshuihe Campus, 2006 Xiyuan Avenue, West District, High-tech Zone, Chengdu, Sichuan 610054, China
- School of Information Technology and Administration, Hunan University of Finance and Economics, 139, 2nd Fenglin Road, Yuelu District, Changsha, Hunan 410205, China
| | - Qi Dai
- College of Life Science and Medicine, Zhejiang Sci-Tech University, No. 5 Second Avenue, Xiasha Higher Education Zone, Hangzhou, Zhejiang 310018, PR China
| | - Shuang Cheng
- Institute of Materials, China Academy of Engineering Physics, Huafeng Xincun No. 9, Jiangyou, Mianyang, Sichuan 621907, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Qingshuihe Campus, 2006 Xiyuan Avenue, West District, High-tech Zone, Chengdu, Sichuan 610054, China
| |
Collapse
|
3
|
Li J, Ren J, Dai W, Stubenrauch C, Finn RD, Wang J. Fungtion: A Server for Predicting and Visualizing Fungal Effector Proteins. J Mol Biol 2024; 436:168613. [PMID: 39237206 DOI: 10.1016/j.jmb.2024.168613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 09/07/2024]
Abstract
Fungal pathogens pose significant threats to plant health by secreting effectors that manipulate plant-host defences. However, identifying effector proteins remains challenging, in part because they lack common sequence motifs. Here, we introduce Fungtion (Fungal effector prediction), a toolkit leveraging a hybrid framework to accurately predict and visualize fungal effectors. By combining global patterns learned from pretrained protein language models with refined information from known effectors, Fungtion achieves state-of-the-art prediction performance. Additionally, the interactive visualizations we have developed enable researchers to explore both sequence- and high-level relationships between the predicted and known effectors, facilitating effector function discovery, annotation, and hypothesis formulation regarding plant-pathogen interactions. We anticipate Fungtion to be a valuable resource for biologists seeking deeper insights into fungal effector functions and for computational biologists aiming to develop future methodologies for fungal effector prediction: https://step3.erc.monash.edu/Fungtion/.
Collapse
Affiliation(s)
- Jiahui Li
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia
| | - Jinzheng Ren
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia; College of Engineering, Computing and Cybernetics, Australian National University, Canberra, ACT 2600, Australia
| | - Wei Dai
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia
| | - Christopher Stubenrauch
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Jiawei Wang
- Biomedicine Discovery Institute, Monash University, VIC 3800, Australia; Centre to Impact AMR, Monash University, VIC 3800, Australia; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
4
|
Beltrán JF, Herrera-Belén L, Parraguez-Contreras F, Farías JG, Machuca-Sepúlveda J, Short S. MultiToxPred 1.0: a novel comprehensive tool for predicting 27 classes of protein toxins using an ensemble machine learning approach. BMC Bioinformatics 2024; 25:148. [PMID: 38609877 PMCID: PMC11010298 DOI: 10.1186/s12859-024-05748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Protein toxins are defense mechanisms and adaptations found in various organisms and microorganisms, and their use in scientific research as therapeutic candidates is gaining relevance due to their effectiveness and specificity against cellular targets. However, discovering these toxins is time-consuming and expensive. In silico tools, particularly those based on machine learning and deep learning, have emerged as valuable resources to address this challenge. Existing tools primarily focus on binary classification, determining whether a protein is a toxin or not, and occasionally identifying specific types of toxins. For the first time, we propose a novel approach capable of classifying protein toxins into 27 distinct categories based on their mode of action within cells. To accomplish this, we assessed multiple machine learning techniques and found that an ensemble model incorporating the Light Gradient Boosting Machine and Quadratic Discriminant Analysis algorithms exhibited the best performance. During the tenfold cross-validation on the training dataset, our model exhibited notable metrics: 0.840 accuracy, 0.827 F1 score, 0.836 precision, 0.840 sensitivity, and 0.989 AUC. In the testing stage, using an independent dataset, the model achieved 0.846 accuracy, 0.838 F1 score, 0.847 precision, 0.849 sensitivity, and 0.991 AUC. These results present a powerful next-generation tool called MultiToxPred 1.0, accessible through a web application. We believe that MultiToxPred 1.0 has the potential to become an indispensable resource for researchers, facilitating the efficient identification of protein toxins. By leveraging this tool, scientists can accelerate their search for these toxins and advance their understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco, Chile
| | - Fernanda Parraguez-Contreras
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jorge G Farías
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jorge Machuca-Sepúlveda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Stefania Short
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| |
Collapse
|
5
|
Demetriou D, Lockhat Z, Brzozowski L, Saini KS, Dlamini Z, Hull R. The Convergence of Radiology and Genomics: Advancing Breast Cancer Diagnosis with Radiogenomics. Cancers (Basel) 2024; 16:1076. [PMID: 38473432 DOI: 10.3390/cancers16051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Despite significant progress in the prevention, screening, diagnosis, prognosis, and therapy of breast cancer (BC), it remains a highly prevalent and life-threatening disease affecting millions worldwide. Molecular subtyping of BC is crucial for predictive and prognostic purposes due to the diverse clinical behaviors observed across various types. The molecular heterogeneity of BC poses uncertainties in its impact on diagnosis, prognosis, and treatment. Numerous studies have highlighted genetic and environmental differences between patients from different geographic regions, emphasizing the need for localized research. International studies have revealed that patients with African heritage are often diagnosed at a more advanced stage and exhibit poorer responses to treatment and lower survival rates. Despite these global findings, there is a dearth of in-depth studies focusing on communities in the African region. Early diagnosis and timely treatment are paramount to improving survival rates. In this context, radiogenomics emerges as a promising field within precision medicine. By associating genetic patterns with image attributes or features, radiogenomics has the potential to significantly improve early detection, prognosis, and diagnosis. It can provide valuable insights into potential treatment options and predict the likelihood of survival, progression, and relapse. Radiogenomics allows for visual features and genetic marker linkage that promises to eliminate the need for biopsy and sequencing. The application of radiogenomics not only contributes to advancing precision oncology and individualized patient treatment but also streamlines clinical workflows. This review aims to delve into the theoretical underpinnings of radiogenomics and explore its practical applications in the diagnosis, management, and treatment of BC and to put radiogenomics on a path towards fully integrated diagnostics.
Collapse
Affiliation(s)
- Demetra Demetriou
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Zarina Lockhat
- Department of Radiology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Luke Brzozowski
- Translational Research and Core Facilities, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kamal S Saini
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
6
|
Zhang S, Zhao Y, Liang Y. AACFlow: an end-to-end model based on attention augmented convolutional neural network and flow-attention mechanism for identification of anticancer peptides. Bioinformatics 2024; 40:btae142. [PMID: 38452348 PMCID: PMC10973939 DOI: 10.1093/bioinformatics/btae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
MOTIVATION Anticancer peptides (ACPs) have natural cationic properties and can act on the anionic cell membrane of cancer cells to kill cancer cells. Therefore, ACPs have become a potential anticancer drug with good research value and prospect. RESULTS In this article, we propose AACFlow, an end-to-end model for identification of ACPs based on deep learning. End-to-end models have more room to automatically adjust according to the data, making the overall fit better and reducing error propagation. The combination of attention augmented convolutional neural network (AAConv) and multi-layer convolutional neural network (CNN) forms a deep representation learning module, which is used to obtain global and local information on the sequence. Based on the concept of flow network, multi-head flow-attention mechanism is introduced to mine the deep features of the sequence to improve the efficiency of the model. On the independent test dataset, the ACC, Sn, Sp, and AUC values of AACFlow are 83.9%, 83.0%, 84.8%, and 0.892, respectively, which are 4.9%, 1.5%, 8.0%, and 0.016 higher than those of the baseline model. The MCC value is 67.85%. In addition, we visualize the features extracted by each module to enhance the interpretability of the model. Various experiments show that our model is more competitive in predicting ACPs.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| | - Ya Zhao
- School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
| | - Yunyun Liang
- School of Science, Xi’an Polytechnic University, Xi'an 710048, China
| |
Collapse
|
7
|
Mou M, Pan Z, Zhou Z, Zheng L, Zhang H, Shi S, Li F, Sun X, Zhu F. A Transformer-Based Ensemble Framework for the Prediction of Protein-Protein Interaction Sites. RESEARCH (WASHINGTON, D.C.) 2023; 6:0240. [PMID: 37771850 PMCID: PMC10528219 DOI: 10.34133/research.0240] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
The identification of protein-protein interaction (PPI) sites is essential in the research of protein function and the discovery of new drugs. So far, a variety of computational tools based on machine learning have been developed to accelerate the identification of PPI sites. However, existing methods suffer from the low predictive accuracy or the limited scope of application. Specifically, some methods learned only global or local sequential features, leading to low predictive accuracy, while others achieved improved performance by extracting residue interactions from structures but were limited in their application scope for the serious dependence on precise structure information. There is an urgent need to develop a method that integrates comprehensive information to realize proteome-wide accurate profiling of PPI sites. Herein, a novel ensemble framework for PPI sites prediction, EnsemPPIS, was therefore proposed based on transformer and gated convolutional networks. EnsemPPIS can effectively capture not only global and local patterns but also residue interactions. Specifically, EnsemPPIS was unique in (a) extracting residue interactions from protein sequences with transformer and (b) further integrating global and local sequential features with the ensemble learning strategy. Compared with various existing methods, EnsemPPIS exhibited either superior performance or broader applicability on multiple PPI sites prediction tasks. Moreover, pattern analysis based on the interpretability of EnsemPPIS demonstrated that EnsemPPIS was fully capable of learning residue interactions within the local structure of PPI sites using only sequence information. The web server of EnsemPPIS is freely available at http://idrblab.org/ensemppis.
Collapse
Affiliation(s)
- Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhimeng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital,
Zhejiang UniversitySchool of Medicine, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
8
|
He S, Ye X, Sakurai T, Zou Q. MRMD3.0: A Python Tool and Webserver for Dimensionality Reduction and Data Visualization via an Ensemble Strategy. J Mol Biol 2023; 435:168116. [PMID: 37356901 DOI: 10.1016/j.jmb.2023.168116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 06/27/2023]
Abstract
Dimensionality reduction is a hot topic in machine learning that can help researchers find key features from complex medical or biological data, which is crucial for biological sequence research, drug development, etc. However, when applied to specific datasets, different dimensionality reduction methods generate different results, which produces instability and makes tuning the parameters a time-consuming task. Exploring high quality features, genes, or attributes from complex data is an important task and challenge. To ensure the efficiency, robustness, and accuracy of experiments, in this work, we developed a dimensionality reduction tool MRMD3.0 based on the ensemble strategy of link analysis. It is mainly divided into two steps: first, the ensemble method is used to integrate different feature ranking algorithms to calculate feature importance, and then the forward feature search strategy combined with cross-validation is used to explore the proper feature combination. Compared with the previously developed version, MRMD3.0 has added more link-based ensemble algorithms, including PageRank, HITS, LeaderRank, and TrustRank. At the same time, more feature ranking algorithms have been added, and their effect and calculation speed have been greatly improved. In addition, the newest version provides an interface used by each feature ranking method and five kinds of charts to help users analyze features. Finally, we also provide an online webserver to help researchers analyze the data. Availability and implementation Webserver: http://lab.malab.cn/soft/MRMDv3/home.html. GitHub: https://github.com/heshida01/MRMD3.0.
Collapse
Affiliation(s)
- Shida He
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China; Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China.
| |
Collapse
|
9
|
Kumar R, Acharya V. Effector protein structures: a tale of evolutionary relationship. TRENDS IN PLANT SCIENCE 2023; 28:746-748. [PMID: 37127498 DOI: 10.1016/j.tplants.2023.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Effector proteins are highly diverse, often lacking similarity in their protein sequences, making it challenging to determine their biological function. Using AlphaFold2 (AF2), Seong and Krasileva recently found that effector structures, but not sequences, share commonality. This helps further understanding of effector evolution across fungal species and reveals unique sequence-unrelated, structurally similar, effector families.
Collapse
Affiliation(s)
- Ravi Kumar
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Xi J, Sun D, Chang C, Zhou S, Huang Q. An omics-to-omics joint knowledge association subtensor model for radiogenomics cross-modal modules from genomics and ultrasonic images of breast cancers. Comput Biol Med 2023; 155:106672. [PMID: 36805226 DOI: 10.1016/j.compbiomed.2023.106672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
The radiogenomics analysis can provide the connections between genomics and radiomics, which can infer the genomic features of tumors from their radiogenomic associations through the low-cost and non-invasiveness screening ultrasonic images. Although there are a number of pioneer approaches exploring the connections between genomic aberrations and ultrasonic features, these studies mainly focus on the relationship between ultrasonic features and only the most popular cancer genes, confronting two difficulties: missing many-to-many relationships as omics-to-omics view, and confounding group-specific associations with whole sample associations. To overcome the difficulty of omics-to-omics view and the issue of tumor heterogeneity, we propose an omics-to-omics joint knowledge association subtensor model. Specifically, the subtensor factorization framework can successfully discover the joint cross-modal module via an omics-to-omics view, while the sparse weight sample indication strategy can mine sample subgroups from the multi-omic data with tumor heterogeneity. The experimental evaluation result shows the jointness of the discovered modules across omics, their association with tumorigenesis contribution, and their relation for cancer related functions. In summary, our proposed omics-to-omics joint knowledge association subtensor model can serve as an efficient tool for radiogenomic knowledge associations, promoting the cross-modal knowledge graph construction of in explainable artificial intelligence cancer diagnosis.
Collapse
Affiliation(s)
- Jianing Xi
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Donghui Sun
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Cai Chang
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qinghua Huang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|