1
|
Cao B, Zheng Y, Shao Q, Liu Z, Xie L, Zhao Y, Wang B, Zhang Q, Wei X. Efficient data reconstruction: The bottleneck of large-scale application of DNA storage. Cell Rep 2024; 43:113699. [PMID: 38517891 DOI: 10.1016/j.celrep.2024.113699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 03/24/2024] Open
Abstract
Over the past decade, the rapid development of DNA synthesis and sequencing technologies has enabled preliminary use of DNA molecules for digital data storage, overcoming the capacity and persistence bottlenecks of silicon-based storage media. DNA storage has now been fully accomplished in the laboratory through existing biotechnology, which again demonstrates the viability of carbon-based storage media. However, the high cost and latency of data reconstruction pose challenges that hinder the practical implementation of DNA storage beyond the laboratory. In this article, we review existing advanced DNA storage methods, analyze the characteristics and performance of biotechnological approaches at various stages of data writing and reading, and discuss potential factors influencing DNA storage from the perspective of data reconstruction.
Collapse
Affiliation(s)
- Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China; Centre for Frontier AI Research, Agency for Science, Technology, and Research (A(∗)STAR), 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China
| | - Qi Shao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Zhenlu Liu
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Lei Xie
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Yunzhu Zhao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China.
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China
| |
Collapse
|
2
|
Johnson MS, Venkataram S, Kryazhimskiy S. Best Practices in Designing, Sequencing, and Identifying Random DNA Barcodes. J Mol Evol 2023; 91:263-280. [PMID: 36651964 PMCID: PMC10276077 DOI: 10.1007/s00239-022-10083-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
Random DNA barcodes are a versatile tool for tracking cell lineages, with applications ranging from development to cancer to evolution. Here, we review and critically evaluate barcode designs as well as methods of barcode sequencing and initial processing of barcode data. We first demonstrate how various barcode design decisions affect data quality and propose a new design that balances all considerations that we are currently aware of. We then discuss various options for the preparation of barcode sequencing libraries, including inline indices and Unique Molecular Identifiers (UMIs). Finally, we test the performance of several established and new bioinformatic pipelines for the extraction of barcodes from raw sequencing reads and for error correction. We find that both alignment and regular expression-based approaches work well for barcode extraction, and that error-correction pipelines designed specifically for barcode data are superior to generic ones. Overall, this review will help researchers to approach their barcoding experiments in a deliberate and systematic way.
Collapse
Affiliation(s)
- Milo S Johnson
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Sandeep Venkataram
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|