1
|
Wall BPG, Nguyen M, Harrell JC, Dozmorov MG. Machine and Deep Learning Methods for Predicting 3D Genome Organization. Methods Mol Biol 2025; 2856:357-400. [PMID: 39283464 DOI: 10.1007/978-1-0716-4136-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Three-dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, topologically associating domains (TADs), and A/B compartments, play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers and transcription factor binding site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, and TAD boundaries) and analyze their pros and cons. We also point out obstacles to the computational prediction of 3D interactions and suggest future research directions.
Collapse
Affiliation(s)
- Brydon P G Wall
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - My Nguyen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - J Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Amjad A, Ahmed S, Kabir M, Arif M, Alam T. A novel deep learning identifier for promoters and their strength using heterogeneous features. Methods 2024; 230:119-128. [PMID: 39168294 DOI: 10.1016/j.ymeth.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024] Open
Abstract
Promoters, which are short (50-1500 base-pair) in DNA regions, have emerged to play a critical role in the regulation of gene transcription. Numerous dangerous diseases, likewise cancer, cardiovascular, and inflammatory bowel diseases, are caused by genetic variations in promoters. Consequently, the correct identification and characterization of promoters are significant for the discovery of drugs. However, experimental approaches to recognizing promoters and their strengths are challenging in terms of cost, time, and resources. Therefore, computational techniques are highly desirable for the correct characterization of promoters from unannotated genomic data. Here, we designed a powerful bi-layer deep-learning based predictor named "PROCABLES", which discriminates DNA samples as promoters in the first-phase and strong or weak promoters in the second-phase respectively. The proposed method utilizes five distinct features, such as word2vec, k-spaced nucleotide pairs, trinucleotide propensity-based features, trinucleotide composition, and electron-ion interaction pseudopotentials, to extract the hidden patterns from the DNA sequence. Afterwards, a stacked framework is formed by integrating a convolutional neural network (CNN) with bidirectional long-short-term memory (LSTM) using multi-view attributes to train the proposed model. The PROCABLES model achieved an accuracy of 0.971 and 0.920 and the MCC 0.940 and 0.840 for the first and second-layer using the ten-fold cross-validation test, respectively. The predicted results anticipate that the proposed PROCABLES protocol outperformed the advanced computational predictors targeting promoters and their types. In summary, this research will provide useful hints for the recognition of large-scale promoters in particular and other DNA problems in general.
Collapse
Affiliation(s)
- Aqsa Amjad
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| | - Saeed Ahmed
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan
| | - Muhammad Kabir
- School of Systems and Technology, University of Management and Technology, Lahore 54770, Pakistan.
| | - Muhammad Arif
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar.
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha 34110, Qatar.
| |
Collapse
|
3
|
Jin W, Xia Y, Thela SR, Liu Y, Chen L. In silico generation and augmentation of regulatory variants from massively parallel reporter assay using conditional variational autoencoder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600715. [PMID: 38979263 PMCID: PMC11230389 DOI: 10.1101/2024.06.25.600715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Predicting the functional consequences of genetic variants in non-coding regions is a challenging problem. Massively parallel reporter assays (MPRAs), which are an in vitro high-throughput method, can simultaneously test thousands of variants by evaluating the existence of allele specific regulatory activity. Nevertheless, the identified labelled variants by MPRAs, which shows differential allelic regulatory effects on the gene expression are usually limited to the scale of hundreds, limiting their potential to be used as the training set for achieving a robust genome-wide prediction. To address the limitation, we propose a deep generative model, MpraVAE, to in silico generate and augment the training sample size of labelled variants. By benchmarking on several MPRA datasets, we demonstrate that MpraVAE significantly improves the prediction performance for MPRA regulatory variants compared to the baseline method, conventional data augmentation approaches as well as existing variant scoring methods. Taking autoimmune diseases as one example, we apply MpraVAE to perform a genome-wide prediction of regulatory variants and find that predicted regulatory variants are more enriched than background variants in enhancers, active histone marks, open chromatin regions in immune-related cell types, and chromatin states associated with promoter, enhancer activity and binding sites of cMyC and Pol II that regulate gene expression. Importantly, predicted regulatory variants are found to link immune-related genes by leveraging chromatin loop and accessible chromatin, demonstrating the importance of MpraVAE in genetic and gene discovery for complex traits.
Collapse
Affiliation(s)
- Weijia Jin
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Yi Xia
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Sai Ritesh Thela
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| |
Collapse
|
4
|
Wall BPG, Nguyen M, Harrell JC, Dozmorov MG. Machine and deep learning methods for predicting 3D genome organization. ARXIV 2024:arXiv:2403.03231v1. [PMID: 38495565 PMCID: PMC10942493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Three-Dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, Topologically Associating Domains (TADs), and A/B compartments play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers, Transcription Factor Binding Site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, TAD boundaries) and analyze their pros and cons. We also point out obstacles of computational prediction of 3D interactions and suggest future research directions.
Collapse
Affiliation(s)
- Brydon P. G. Wall
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - My Nguyen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - J. Chuck Harrell
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
- Center for Pharmaceutical Engineering, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
5
|
Knudsen JE, Rich JM, Ma R. Artificial Intelligence in Pathomics and Genomics of Renal Cell Carcinoma. Urol Clin North Am 2024; 51:47-62. [PMID: 37945102 DOI: 10.1016/j.ucl.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The integration of artificial intelligence (AI) with histopathology images and gene expression patterns has led to the emergence of the dynamic fields of pathomics and genomics. These fields have revolutionized renal cell carcinoma (RCC) diagnosis and subtyping and improved survival prediction models. Machine learning has identified unique gene patterns across RCC subtypes and grades, providing insights into RCC origins and potential treatments, as targeted therapies. The combination of pathomics and genomics using AI opens new avenues in RCC research, promising future breakthroughs and innovations that patients and physicians can anticipate.
Collapse
Affiliation(s)
- J Everett Knudsen
- Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, Center for Robotic Simulation & Education, University of Southern California, Los Angeles, CA, USA
| | - Joseph M Rich
- Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, Center for Robotic Simulation & Education, University of Southern California, Los Angeles, CA, USA
| | - Runzhuo Ma
- Catherine & Joseph Aresty Department of Urology, USC Institute of Urology, Center for Robotic Simulation & Education, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Agarwal A, Zhao F, Jiang Y, Chen L. TIVAN-indel: a computational framework for annotating and predicting non-coding regulatory small insertions and deletions. Bioinformatics 2023; 39:btad060. [PMID: 36707993 PMCID: PMC9900211 DOI: 10.1093/bioinformatics/btad060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
MOTIVATION Small insertion and deletion (sindel) of human genome has an important implication for human disease. One important mechanism for non-coding sindel (nc-sindel) to have an impact on human diseases and phenotypes is through the regulation of gene expression. Nevertheless, current sequencing experiments may lack statistical power and resolution to pinpoint the functional sindel due to lower minor allele frequency or small effect size. As an alternative strategy, a supervised machine learning method can identify the otherwise masked functional sindels by predicting their regulatory potential directly. However, computational methods for annotating and predicting the regulatory sindels, especially in the non-coding regions, are underdeveloped. RESULTS By leveraging labeled nc-sindels identified by cis-expression quantitative trait loci analyses across 44 tissues in Genotype-Tissue Expression (GTEx), and a compilation of both generic functional annotations and large-scale epigenomic profiles, we develop TIssue-specific Variant Annotation for Non-coding indel (TIVAN-indel), which is a supervised computational framework for predicting non-coding regulatory sindels. As a result, we demonstrate that TIVAN-indel achieves the best prediction performance in both with-tissue prediction and cross-tissue prediction. As an independent evaluation, we train TIVAN-indel from the 'Whole Blood' tissue in GTEx and test the model using 15 immune cell types from an independent study named Database of Immune Cell Expression. Lastly, we perform an enrichment analysis for both true and predicted sindels in key regulatory regions such as chromatin interactions, open chromatin regions and histone modification sites, and find biologically meaningful enrichment patterns. AVAILABILITY AND IMPLEMENTATION https://github.com/lichen-lab/TIVAN-indel. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Aman Agarwal
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| | - Fengdi Zhao
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA
| | - Yuchao Jiang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|