1
|
Xu J, Shen Z, Hao T, Su H, Chen M, Pan X, Yi Z. Exploring the evolution of anaerobes within ciliate class Prostomatea by transcriptomics. Mol Phylogenet Evol 2025; 207:108345. [PMID: 40174813 DOI: 10.1016/j.ympev.2025.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/18/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Mitochondrion-related organelles (MROs) enable anaerobic eukaryotes to thrive in anoxic environments, and the independent ciliate lineages of anaerobes serve as excellent candidates for investigating the convergent evolutionary transition from mitochondria to MROs. Previous studies have demonstrated that the adaptations of ciliates to anaerobic conditions may be lineage-specific. However, our understanding of the diverse metabolic peculiarities of MROs is limited to a few ciliate lineages. In this study, we sequenced the transcriptomes of four anaerobic species from two genera (Apolagynus and Holophrya), which are classified within the predominantly aerobic class Prostomatea, and predicted their mitochondrial metabolisms. The ecological niches of prostomatean anaerobes were mapped onto newly constructed phylogenomic trees and small subunit (SSU) rDNA trees. Results showed that paraphyletic class Prostomatea containing six clades (Clade Ⅰ-Ⅵ) has a close relationship with Oligohymenophorea and Plagiopylea. Notably, all prostomatean species within Clade Ⅱ are anaerobic, while anaerobes are only sporadically present in other clades. The MROs of anaerobic prostomatean species display at least two distinct phenotypes. Holophrya ovum in Clade Ⅰ produces ATP by oxidative phosphorylation under aerobic conditions and via substrate-level phosphorylation via acetate: succinate CoA transferase (ASCT) and succinyl CoA synthetase (SCS) as well as adenylate kinase (AK) under anaerobic conditions. In contrast, three species of Apolagynus in Clade Ⅱ possess reduced electron transport chain (ETC), and are capable of ATP generation via substrate-level phosphorylation mediated by ASCT/SCS and propionyl-CoA. Additionally, these three Apolagynus species possess [FeFe] hydrogenase probably producing H2. A comparison of the ETC pathways among various anaerobic ciliates further showed that the MROs of these organisms have originated from repeated convergent evolution. Our findings shed lights on evolutionary history of anaerobes within the ciliate class Prostomatea.
Collapse
Affiliation(s)
- Jiahui Xu
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhuo Shen
- Earth, Ocean and Atmospheric Sciences Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511458, China; School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Tingting Hao
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Miaoying Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xuming Pan
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| | - Zhenzhen Yi
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Záhonová K, Füssy Z, Albanaz ATS, Butenko A, Kachale A, Kraeva N, Galan A, Zakharova A, Stojanova B, Votýpka J, Kostygov AY, Spodareva VV, Malysheva MN, Frolov AO, Rogozin IB, Paris Z, Valášek LS, Yurchenko V, Lukeš J. Comparative genomic analysis of trypanosomatid protists illuminates an extensive change in the nuclear genetic code. mBio 2025:e0088525. [PMID: 40293238 DOI: 10.1128/mbio.00885-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Trypanosomatids are among the most extensively studied protists due to their parasitic interactions with insects, vertebrates, and plants. Recently, Blastocrithidia nonstop was found to depart from the canonical genetic code, with all three stop codons reassigned to encode amino acids (UAR for glutamate and UGA for tryptophan), and UAA having dual meaning also as a termination signal (glutamate and stop). To explore features linked to this phenomenon, we analyzed the genomes of four Blastocrithidia and four Obscuromonas species, the latter representing a sister group employing the canonical genetic code. We found that all Blastocrithidia species encode cognate tRNAs for UAR codons, possess a distinct 4 bp anticodon stem tRNATrpCCA decoding UGA, and utilize UAA as the only stop codon. The distribution of in-frame reassigned codons is consistently non-random, suggesting a translational burden avoided in highly expressed genes. Frame-specific enrichment of UAA codons immediately following the genuine UAA stop codon, not observed in Obscuromonas, points to a specific mode of termination. All Blastocrithidia species possess specific mutations in eukaryotic release factor 1 and a unique acidic region following the prion-like N-terminus of eukaryotic release factor 3 that may be associated with stop codon readthrough. We infer that the common ancestor of the genus Blastocrithidia already exhibited a GC-poor genome with the non-canonical genetic code. Our comparative analysis highlights features associated with this extensive stop codon reassignment. This cascade of mutually dependent adaptations, driven by increasing AU-richness in transcripts and frequent emergence of in-frame stops, underscores the dynamic interplay between genome composition and genetic code plasticity to maintain vital functionality. IMPORTANCE The genetic code, assigning amino acids to codons, is almost universal, yet an increasing number of its alterations keep emerging, mostly in organelles and unicellular eukaryotes. One such case is the trypanosomatid genus Blastocrithidia, where all three stop codons were reassigned to amino acids, with UAA also serving as a sole termination signal. We conducted a comparative analysis of four Blastocrithidia species, all with the same non-canonical genetic code, and their close relatives of the genus Obscuromonas, which retain the canonical code. This across-genome comparison allowed the identification of key traits associated with genetic code reassignment in Blastocrithidia. This work provides insight into the evolutionary steps, facilitating an extensive departure from the canonical genetic code that occurred independently in several eukaryotic lineages.
Collapse
Affiliation(s)
- Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zoltán Füssy
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Ambar Kachale
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Bojana Stojanova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Viktoria V Spodareva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina N Malysheva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander O Frolov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Igor B Rogozin
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| | | | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czechia
| |
Collapse
|
3
|
Boudreau V, Albright AR, Larson B, Gerbich TM, Fadero T, Yan V, Lucas-DeMott A, Yung J, Moulin SL, Descovich CP, Slabodnick MM, Burlacot A, Wang JR, Niyogi KK, Marshall WF. The cell biology and genome of Stentor pyriformis, a giant cell that embeds symbiotic algae in a microtubule meshwork. Mol Biol Cell 2025; 36:ar44. [PMID: 39937680 PMCID: PMC12005096 DOI: 10.1091/mbc.e24-12-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Endosymbiotic events in which an endosymbiont is retained within a cell that remains capable of phagocytosis, a situation known as mixotrophy, provide potentially important clues about the eukaryotic evolution. Here we describe the cell biology and genome of the giant mixotrophic ciliate Stentor pyriformis. We show that S. pyriformis contains Chlorella variabilis as an endosymbiont that retains the ability to live outside the host. Within the host, the Chlorella cells surrounded by microtubule "baskets" near the cell surface. Photosynthetic efficiency of the Chlorella is reduced inside the Stentor cell compared with outside the host, due to increased nonphotochemical quenching. S. pyriformis displays positive phototaxis via directed swimming that requires the presence of the Chlorella, implying a potential flow of information from the symbiont to direct the orientation and swimming of the host cell. We sequenced the S. pyriformis genome and found that it employs a standard genetic code, similar to other Stentor species but different from most other ciliates. We propose that S. pyriformis will serve as a useful model system for studying endosymbiosis, with unique advantages in terms of size and regenerative ability as well as distinct cellular and genomic features compared with other mixotrophic ciliate models.
Collapse
Affiliation(s)
- Vincent Boudreau
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
- The Whitman Center, The Marine Biological Laboratory, Woods Hole, MA 02543
| | - Ashley R. Albright
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158
| | - Ben T. Larson
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| | | | - Tanner Fadero
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Victoria Yan
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Aviva Lucas-DeMott
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Jay Yung
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Solène L.Y. Moulin
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
| | - Carlos Patiño Descovich
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065
| | - Mark M Slabodnick
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
- Department of Biology, Knox College, Galesburg, IL 61401
| | - Adrien Burlacot
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
- The Carnegie Institution for Science, Biosphere Sciences and Engineering, Stanford, CA 94305
- Biology Department, Stanford University, Stanford, CA 94305
| | - Jeremy R. Wang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Wallace F. Marshall
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
4
|
Pánek T, Tice AK, Corre P, Hrubá P, Žihala D, Kamikawa R, Yazaki E, Shiratori T, Kume K, Hashimoto T, Ishida KI, Hradilová M, Silberman JD, Roger A, Inagaki Y, Eliáš M, Brown MW, Čepička I. An expanded phylogenomic analysis of Heterolobosea reveals the deep relationships, non-canonical genetic codes, and cryptic flagellate stages in the group. Mol Phylogenet Evol 2025; 204:108289. [PMID: 39826589 DOI: 10.1016/j.ympev.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The phylum Heterolobosea Page and Blanton, 1985 is a group of eukaryotes that contains heterotrophic flagellates, amoebae, and amoeboflagellates, including the infamous brain-eating amoeba Naegleria fowleri. In this study, we investigate the deep evolutionary history of Heterolobosea by generating and analyzing transcriptome data from 16 diverse isolates and combine this with previously published data in a comprehensive phylogenomic analysis. This dataset has representation of all but one of the major lineages classified here as orders. Our phylogenomic analyses recovered a robustly supported phylogeny of Heterolobosea providing a phylogenetic framework for understanding their evolutionary history. Based on the newly recovered relationships, we revised the classification of Heterolobosea to the family level. We describe two new classes (Eutetramitea cl. nov. and Selenaionea cl. nov) and one new order (Naegleriida ord. nov.), and provide a new delimitation of the largest family of Heterolobosea, Vahlkampfiidae Jollos, 1917. Unexpectedly, we unveiled the first two cases of genetic code alterations in the group: UAG as a glutamine codon in the nuclear genome of Dactylomonas venusta and UGA encoding tryptophan in the mitochondrial genome of Neovahlkampfia damariscottae. In addition, analysis of the genome of the latter species confirmed its inability to make flagella, whereas we identified hallmark flagellum-specific genes in most other heteroloboseans not previously observed to form flagellates, suggesting that the loss of flagella in Heterolobosea is much rarer than generally thought. Finally, we define the first autapomorphy of the subphylum Pharyngomonada, represented by a fusion of two key genes for peroxisomal β-oxidation enzymes.
Collapse
Affiliation(s)
- Tomáš Pánek
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia.
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Pia Corre
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia
| | - Pavla Hrubá
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia
| | - David Žihala
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Ostrava, Czechia; Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | - Euki Yazaki
- University of Tsukuba, Tsukuba, Japan; Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | | | | | - Miluše Hradilová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic, Czechia
| | - Jeffrey D Silberman
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; University of Arkansas, Department of Biological Sciences, Fayetteville, AR, USA
| | - Andrew Roger
- Dalhousie University, Dept. of Biochemistry and Molecular Biology, Halifax, Canada
| | | | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Ostrava, Czechia
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Ivan Čepička
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia
| |
Collapse
|
5
|
McGowan J, Richards TA, Hall N, Swarbreck D. Multiple independent genetic code reassignments of the UAG stop codon in phyllopharyngean ciliates. PLoS Genet 2024; 20:e1011512. [PMID: 39689125 DOI: 10.1371/journal.pgen.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/31/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
The translation of nucleotide sequences into amino acid sequences, governed by the genetic code, is one of the most conserved features of molecular biology. The standard genetic code, which uses 61 sense codons to encode one of the 20 standard amino acids and 3 stop codons (UAA, UAG, and UGA) to terminate translation, is used by most extant organisms. The protistan phylum Ciliophora (the 'ciliates') are the most prominent exception to this norm, exhibiting the grfeatest diversity of nuclear genetic code variants and evidence of repeated changes in the code. In this study, we report the discovery of multiple independent genetic code changes within the Phyllopharyngea class of ciliates. By mining publicly available ciliate genome datasets, we discovered that three ciliate species from the TARA Oceans eukaryotic metagenome dataset use the UAG codon to putatively encode leucine. We identified novel suppressor tRNA genes in two of these genomes which are predicted to decode the reassigned UAG codon to leucine. Phylogenomics analysis revealed that these three uncultivated taxa form a monophyletic lineage within the Phyllopharyngea class. Expanding our analysis by reassembling published phyllopharyngean genome datasets led to the discovery that the UAG codon had also been reassigned to putatively code for glutamine in Hartmannula sinica and Trochilia petrani. Phylogenomics analysis suggests that this occurred via two independent genetic code change events. These data demonstrate that the reassigned UAG codons have widespread usage as sense codons within the phyllopharyngean ciliates. Furthermore, we show that the function of UAA is firmly fixed as the preferred stop codon. These findings shed light on the evolvability of the genetic code in understudied microbial eukaryotes.
Collapse
Affiliation(s)
- Jamie McGowan
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
6
|
Fu Y, Ni P, Zhang Y, Liang F, Stover NA, Li L. The genome and comparative transcriptome of the euryhaline model ciliate Paramecium duboscqui reveal adaptations to environmental salinity. BMC Biol 2024; 22:237. [PMID: 39407207 PMCID: PMC11476214 DOI: 10.1186/s12915-024-02026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND As a potential model organism for studies of environmental and cell biology, Paramecium duboscqui is a special euryhaline species of Paramecium that can be found in fresh, brackish, or marine water in natural salinity ranges between 0‰ and 33‰. However, the genome information as well as molecular mechanisms that account for its remarkable halotolerant traits remain extremely unknown. To characterize its genome feature, we combined PacBio and Illumina sequencing to assemble the first high-quality and near-complete macronuclear genome of P. duboscqui. Meanwhile, comparative transcriptomic profiles under different salinities gave underlying insight into the molecular mechanism of its adaptations to environmental salinity. RESULTS The results showed that the MAC genome of P. duboscqui comprises 160 contigs, with 113 of them possessing telomere (~ 28.82 Mb haploid genome size). Through comparative genomic analyses with the other ciliate, we found that gene families encoding transmembrane transporter proteins have been expanded in P. duboscqui, showing enormous potential in salinity adaptation. Like other Paramecium, P. duboscqui utilizes TGA as its only termination codon and has reassigned TAA and TAG to encode glutamine. P. duboscqui showed different growth rates under different salinities, with an optimum growth rate in 5‰ salinity. A comparison of the transcriptomic profiles among P. duboscqui grown under different concentrations showed that genes involved in protein folding, oxygen respiration, and glutathione-dependent detoxification were upregulated in the high-salt group, whereas genes encoding DNA-binding proteins and transcription factors were upregulated in the low-salt group, suggesting distinct mechanisms for responding to low and high salinity. Weighted gene coexpression network analysis (WGCNA) linked the hub genes expressed at 30‰ salinity to cysteine-type peptidase activity, lipid transfer, sodium hydrogen exchange, and cell division, with the hub genes expressed at 0‰ salinity involved in transmembrane transport and protein localization. CONCLUSIONS This study characterizes a new euryhaline model Paramecium, provides novel insights into Paramecium evolution, and describes the molecular mechanisms that have allow P. duboscqui to adapt to different osmotic environments.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Ping Ni
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Ying Zhang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Fasheng Liang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, 61625, USA
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
7
|
Fujii N, Kuroda K, Narihiro T, Aoi Y, Ozaki N, Ohashi A, Kindaichi T. Unique episymbiotic relationship between Candidatus Patescibacteria and Zoogloea in activated sludge flocs at a municipal wastewater treatment plant. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70007. [PMID: 39267333 PMCID: PMC11393006 DOI: 10.1111/1758-2229.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Candidatus Patescibacteria, also known as candidate phyla radiation (CPR), including the class-level uncultured clade JAEDAM01 (formerly a subclass of Gracilibacteria/GN02/BD1-5), are ubiquitous in activated sludge. However, their characteristics and relationships with other organisms are largely unknown. They are believed to be episymbiotic, endosymbiotic or predatory. Despite our understanding of their limited metabolic capacity, their precise roles remain elusive due to the difficulty in cultivating and identifying them. In previous research, we successfully recovered high-quality metagenome-assembled genomes (MAGs), including a member of JAEDAM01 from activated sludge flocs. In this study, we designed new probes to visualize the targeted JAEDAM01-associated MAG HHAS10 and identified its host using fluorescence in situ hybridization (FISH). The FISH observations revealed that JAEDAM01 HHAS10-like cells were located within dense clusters of Zoogloea, and the fluorescence brightness of zoogloeal cells decreased in the vicinity of the CPR cells. The Zoogloea MAGs possessed genes related to extracellular polymeric substance biosynthesis, floc formation and nutrient removal, including a polyhydroxyalkanoate (PHA) accumulation pathway. The JAEDAM01 MAG HHAS10 possessed genes associated with type IV pili, competence protein EC and PHA degradation, suggesting a Zoogloea-dependent lifestyle in activated sludge flocs. These findings indicate a new symbiotic relationship between JAEDAM01 and Zoogloea.
Collapse
Affiliation(s)
- Naoki Fujii
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | - Yoshiteru Aoi
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Zhou Z, Li C, Yuan Q, Chi Y, Li Y, Yan Y, Al-Farraj SA, Stover NA, Chen Z, Chen X. Single-cell transcriptomic analysis reveals genome evolution in predatory litostomatean ciliates. Eur J Protistol 2024; 93:126062. [PMID: 38368736 PMCID: PMC12036533 DOI: 10.1016/j.ejop.2024.126062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Many ciliated protists prey on other large microbial organisms, including other protists and microscopic metazoans. The ciliate class Litostomatea unites both predatory and endosymbiotic species. The evolution of predation ability in ciliates remains poorly understood, in part, due to a lack of genomic data. To fill this gap, we acquired the transcriptome profiles of six predatory litostomateans using single-cell sequencing technology and investigated their transcriptomic features. Our results show that: (1) in contrast to non-predatory ciliates, the predatory litostomateans have expanded gene families associated with transmembrane activity and reactive oxidative stress response pathways, potentially as a result of cellular behaviors such as fast contraction and extension; (2) the expansion of the calcium-activated BK potassium channel gene family, which hypothetically regulates cell contractility, is an ancient evolutionary event for the class Litostomatea, suggesting a rewired metabolism associated with the hunting behavior of predatory ciliates; and (3) three whole genome duplication (WGD) events have been detected in litostomateans, with genes associated with biosynthetic processes, transmembrane activity, and calcium-activated potassium channel activity being retained during the WGD events. In addition, we explored the evolutionary relationships among 17 ciliate species, including eight litostomateans, and provided a rich foundational dataset for future in-depth phylogenomic studies of Litostomatea. Our comprehensive analyses suggest that the rewired cellular metabolism via expanded gene families and WGD events might be the potential genetic basis for the predation ability of raptorial ciliates.
Collapse
Affiliation(s)
- Zhaorui Zhou
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Chao Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Qingxiang Yuan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yong Chi
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuqing Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria 61625, USA.
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China; Suzhou Research Institute, Shandong University, Suzhou 215123, China.
| |
Collapse
|
9
|
Rotterová J, Pánek T, Salomaki ED, Kotyk M, Táborský P, Kolísko M, Čepička I. Single cell transcriptomics reveals UAR codon reassignment in Palmarella salina (Metopida, Armophorea) and confirms Armophorida belongs to APM clade. Mol Phylogenet Evol 2024; 191:107991. [PMID: 38092322 DOI: 10.1016/j.ympev.2023.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Anaerobes have emerged in several major lineages of ciliates, but the number of independent transitions to anaerobiosis among ciliates is unknown. The APM clade (Armophorea, Muranotrichea, Parablepharismea) represents the largest clade of obligate anaerobes among ciliates and contains free-living marine and freshwater representatives as well as gut endobionts of animals. The evolution of APM group has only recently started getting attention, and our knowledge on its phylogeny and genetics is still limited to a fraction of taxa. While ciliates portray a wide array of alternatives to the standard genetic code across numerous classes, the APM ciliates were considered to be the largest group using exclusively standard nuclear genetic code. In this study, we present a pan-ciliate phylogenomic analysis with emphasis on the APM clade, bringing the first phylogenomic analysis of the family Tropidoatractidae (Armophorea) and confirming the position of Armophorida within Armophorea. We include five newly sequenced single cell transcriptomes from marine, freshwater, and endobiotic APM ciliates - Palmarella salina, Anteclevelandella constricta, Nyctotherus sp., Caenomorpha medusula, and Thigmothrix strigosa. We report the first discovery of an alternative nuclear genetic code among APM ciliates, used by Palmarella salina (Tropidoatractidae, Armophorea), but not by its close relative, Tropidoatractus sp., and provide a comparative analysis of stop codon identity and frequency indicating the precedency to the UAG codon loss/reassignment over the UAA codon reassignment in the specific ancestor of Palmarella. Comparative genomic and proteomic studies of this group may help explain the constraints that underlie UAR stop-to-sense reassignment, the most frequent type of alternative nuclear genetic code, not only in ciliates, but eukaryotes in general.
Collapse
Affiliation(s)
- Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic; Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, PR, USA.
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, Rhode Island, USA
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic.
| |
Collapse
|
10
|
Gao X, Chen K, Xiong J, Zou D, Yang F, Ma Y, Jiang C, Gao X, Wang G, Gu S, Zhang P, Luo S, Huang K, Bao Y, Zhang Z, Ma L, Miao W. The P10K database: a data portal for the protist 10 000 genomes project. Nucleic Acids Res 2024; 52:D747-D755. [PMID: 37930867 PMCID: PMC10767852 DOI: 10.1093/nar/gkad992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Protists, a highly diverse group of microscopic eukaryotic organisms distinct from fungi, animals and plants, exert crucial roles within the earth's biosphere. However, the genomes of only a small fraction of known protist species have been published and made publicly accessible. To address this constraint, the Protist 10 000 Genomes Project (P10K) was initiated, implementing a specialized pipeline for single-cell genome/transcriptome assembly, decontamination and annotation of protists. The resultant P10K database (https://ngdc.cncb.ac.cn/p10k/) serves as a comprehensive platform, collating and disseminating genome sequences and annotations from diverse protist groups. Currently, the P10K database has incorporated 2959 genomes and transcriptomes, including 1101 newly sequenced datasets by P10K and 1858 publicly available datasets. Notably, it covers 45% of the protist orders, with a significant representation (53% coverage) of ciliates, featuring nearly a thousand genomes/transcriptomes. Intriguingly, analysis of the unique codon table usage among ciliates has revealed differences compared to the NCBI taxonomy system, suggesting a need to revise the codon tables used for these species. Collectively, the P10K database serves as a valuable repository of genetic resources for protist research and aims to expand its collection by incorporating more sequenced data and advanced analysis tools to benefit protist studies worldwide.
Collapse
Affiliation(s)
- Xinxin Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Zou
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangdian Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yingke Ma
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoxuan Gao
- Shandong University of Technology, Zibo 255000, China
| | - Guangying Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Siyu Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuai Luo
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaiyao Huang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yiming Bao
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhang Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lina Ma
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
11
|
Field CJ, Bowerman KL, Hugenholtz P. Multiple independent losses of sporulation and peptidoglycan in the Mycoplasmatales and related orders of the class Bacilli. Microb Genom 2024; 10:001176. [PMID: 38189216 PMCID: PMC10868615 DOI: 10.1099/mgen.0.001176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Many peptidoglycan-deficient bacteria such as the Mycoplasmatales are known host-associated lineages, lacking the environmental resistance mechanisms and metabolic capabilities necessary for a free-living lifestyle. Several peptidoglycan-deficient and non-sporulating orders of interest are thought to be descended from Gram-positive sporulating Bacilli through reductive evolution. Here we annotate 2650 genomes belonging to the class Bacilli, according to the Genome Taxonomy Database, to predict the peptidoglycan and sporulation phenotypes of three novel orders, RFN20, RF39 and ML615J-28, known only through environmental sequence surveys. These lineages are interspersed between peptidoglycan-deficient non-sporulating orders including the Mycoplasmatales and Acholeplasmatales, and more typical Gram-positive orders such as the Erysipelotrichales and Staphylococcales. We use the extant genotypes to perform ancestral state reconstructions. The novel orders are predicted to have small genomes with minimal metabolic capabilities and to comprise a mix of peptidoglycan-deficient and/or non-sporulating species. In contrast to expectations based on cultured representatives, the order Erysipelotrichales lacks many of the genes involved in peptidoglycan and endospore formation. The reconstructed evolutionary history of these traits suggests multiple independent whole-genome reductions and loss of phenotype via intermediate transition states that continue into the present. We suggest that the evolutionary history of the reduced-genome lineages within the class Bacilli is one driven by multiple independent transitions to host-associated lifestyles, with the degree of reduction in environmental resistance and metabolic capabilities correlated with degree of host association.
Collapse
Affiliation(s)
- Christian J. Field
- School of Chemistry and Molecular Biosciences, The Australian Centre for Ecogenomics, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kate L. Bowerman
- School of Chemistry and Molecular Biosciences, The Australian Centre for Ecogenomics, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, The Australian Centre for Ecogenomics, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
12
|
Yarus M. The Genetic Code Assembles via Division and Fusion, Basic Cellular Events. Life (Basel) 2023; 13:2069. [PMID: 37895450 PMCID: PMC10608286 DOI: 10.3390/life13102069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Standard Genetic Code (SGC) evolution is quantitatively modeled in up to 2000 independent coding 'environments'. Environments host multiple codes that may fuse or divide, with division yielding identical descendants. Code division may be selected-sophisticated gene products could be required for an orderly separation that preserves the coding. Several unforeseen results emerge: more rapid evolution requires unselective code division rather than its selective form. Combining selective and unselective code division, with/without code fusion, with/without independent environmental coding tables, and with/without wobble defines 25 = 32 possible pathways for SGC evolution. These 32 possible histories are compared, specifically, for evolutionary speed and code accuracy. Pathways differ greatly, for example, by ≈300-fold in time to evolve SGC-like codes. Eight of thirty-two pathways employing code division evolve quickly. Four of these eight that combine fusion and division also unite speed and accuracy. The two most precise, swiftest paths; thus the most likely routes to the SGC are similar, differing only in fusion with independent environmental codes. Code division instead of fusion with unrelated codes implies that exterior codes can be dispensable. Instead, a single ancestral code that divides and fuses can initiate fully encoded peptide biosynthesis. Division and fusion create a 'crescendo of competent coding', facilitating the search for the SGC and also assisting the advent of otherwise uniformly disfavored wobble coding. Code fusion can unite multiple codon assignment mechanisms. However, via code division and fusion, an SGC can emerge from a single primary origin via familiar cellular events.
Collapse
Affiliation(s)
- Michael Yarus
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
13
|
McGowan J, Kilias ES, Alacid E, Lipscombe J, Jenkins BH, Gharbi K, Kaithakottil GG, Macaulay IC, McTaggart S, Warring SD, Richards TA, Hall N, Swarbreck D. Identification of a non-canonical ciliate nuclear genetic code where UAA and UAG code for different amino acids. PLoS Genet 2023; 19:e1010913. [PMID: 37796765 PMCID: PMC10553269 DOI: 10.1371/journal.pgen.1010913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 10/07/2023] Open
Abstract
The genetic code is one of the most highly conserved features across life. Only a few lineages have deviated from the "universal" genetic code. Amongst the few variants of the genetic code reported to date, the codons UAA and UAG virtually always have the same translation, suggesting that their evolution is coupled. Here, we report the genome and transcriptome sequencing of a novel uncultured ciliate, belonging to the Oligohymenophorea class, where the translation of the UAA and UAG stop codons have changed to specify different amino acids. Genomic and transcriptomic analyses revealed that UAA has been reassigned to encode lysine, while UAG has been reassigned to encode glutamic acid. We identified multiple suppressor tRNA genes with anticodons complementary to the reassigned codons. We show that the retained UGA stop codon is enriched in the 3'UTR immediately downstream of the coding region of genes, suggesting that there is functional drive to maintain tandem stop codons. Using a phylogenomics approach, we reconstructed the ciliate phylogeny and mapped genetic code changes, highlighting the remarkable number of independent genetic code changes within the Ciliophora group of protists. According to our knowledge, this is the first report of a genetic code variant where UAA and UAG encode different amino acids.
Collapse
Affiliation(s)
- Jamie McGowan
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Elisabet Alacid
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James Lipscombe
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Iain C. Macaulay
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Seanna McTaggart
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Sally D. Warring
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | | | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|