1
|
Fornasiero A, Feng T, Al-Bader N, Alsantely A, Mussurova S, Hoang NV, Misra G, Zhou Y, Fabbian L, Mohammed N, Rivera Serna L, Thimma M, Llaca V, Parakkal P, Kudrna D, Copetti D, Rajasekar S, Lee S, Talag J, Sobel-Sorenson C, Carpentier MC, Panaud O, McNally KL, Zhang J, Zuccolo A, Schranz ME, Wing RA. Oryza genome evolution through a tetraploid lens. Nat Genet 2025; 57:1287-1297. [PMID: 40295881 PMCID: PMC12081313 DOI: 10.1038/s41588-025-02183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Oryza is a remarkable genus comprising 27 species and 11 genome types, with ~3.4-fold genome size variation, that possesses a virtually untapped reservoir of genes that can be used for crop improvement and neodomestication. Here we present 11 chromosome-level assemblies (nine tetraploid, two diploid) in the context of ~15 million years of evolution and show that the core Oryza (sub)genome is only ~200 Mb and largely syntenic, whereas the remaining nuclear fractions (~80-600 Mb) are intermingled, plastic and rapidly evolving. For the halophyte Oryza coarctata, we found that despite detection of gene fractionation in the subgenomes, homoeologous genes were expressed at higher levels in one subgenome over the other in a mosaic form, demonstrating subgenome equivalence. The integration of these 11 new reference genomes with previously published genome datasets provides a nearly complete view of the consequences of evolution for genome diversification across the genus.
Collapse
Affiliation(s)
- Alice Fornasiero
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Tao Feng
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Noor Al-Bader
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aseel Alsantely
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- National Center for Vegetation Development and Combating Desertification (NCVC), Riyadh, Saudi Arabia
| | - Saule Mussurova
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Gopal Misra
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yong Zhou
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Leonardo Fabbian
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nahed Mohammed
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luis Rivera Serna
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manjula Thimma
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA, USA
| | | | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Seunghee Lee
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Jayson Talag
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Chandler Sobel-Sorenson
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR 5096 CNRS/IRD 52, Université de Perpignan, Perpignan, France
- EMR MANGO Université de Perpignan/CNRS/IRD, Perpignan, France
| | - Kenneth L McNally
- Rice Breeding Innovations Department, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Jianwei Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Andrea Zuccolo
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Institute of Crop Science, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, the Netherlands.
| | - Rod A Wing
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Gallo A, Bernardini A, Polettini S, Dolfini D, Gnesutta N, Mantovani R. Multiple Retrotransposon-mediated NF-YA Gene Duplication Events Recurred in Diverse Groups of Mammals at Different Ancestry Levels. Genome Biol Evol 2025; 17:evaf071. [PMID: 40408078 PMCID: PMC12101057 DOI: 10.1093/gbe/evaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2025] [Indexed: 05/26/2025] Open
Abstract
NF-Y is a transcription factor trimer formed by Histone Fold subunits NF-YB/NF-YC and NF-YA, which confers sequence-specificity for the CCAAT box, an important cis regulatory element. The subunits are extremely conserved in all eukaryotes and in mammals they are typically encoded by single copy genes. We describe here the presence of a second NF-YA termed NF-YAr for retrogene in diverse groups of mammals (Cetacea, Ruminantia, Ursidae, Sciuridae, hippopotamus, and greater horseshoe bat). NF-YAr retrogenes are located on different chromosomes with respect to the parental gene; they are compact and intronless, or with few annotated introns. Phylogenetic and synteny analyses indicate multiple independent retrotransposition events in the different orders. Analysis of RNA-seq data of Bos taurus suggests expression confined to spermatozoa. Conservation of translation initiation signals around predicted start codons, and of 5'UTR sequences, are consistent with protein expression, suggesting that NF-YAr is a translated, retroposed NF-YA. 3D-informed structural considerations of the predicted protein sequences point at deleterious changes for CCAAT-binding and, potentially, for trimer formation. These findings indicate that multiple independent NF-YA retrotransposition events were fixed in selected orders of mammals, generating a second NF-YA with a strict tissue distribution.
Collapse
Affiliation(s)
- Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Sofia Polettini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
3
|
Almeida-Silva F, Van de Peer Y. doubletrouble: an R/Bioconductor package for the identification, classification, and analysis of gene and genome duplications. Bioinformatics 2025; 41:btaf043. [PMID: 39862387 PMCID: PMC11810640 DOI: 10.1093/bioinformatics/btaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 01/27/2025] Open
Abstract
SUMMARY Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly. Here, we present doubletrouble, an R/Bioconductor package that provides a comprehensive and robust framework for analyzing duplicated genes from genomic data. doubletrouble can detect and classify gene pairs as derived from six duplication modes (segmental, tandem, proximal, retrotransposon-derived, DNA transposon-derived, and dispersed duplications), calculate substitution rates, detect signatures of putative whole-genome duplication events, and visualize results as publication-ready figures. We applied doubletrouble to classify the duplicated gene repertoire in 822 eukaryotic genomes, and results were made available through a user-friendly web interface. AVAILABILITY AND IMPLEMENTATION doubletrouble is available on Bioconductor (https://bioconductor.org/packages/doubletrouble), and the source code is available in a GitHub repository (https://github.com/almeidasilvaf/doubletrouble). doubletroubledb is available online at https://almeidasilvaf.github.io/doubletroubledb/.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, Nanjing, China
| |
Collapse
|
4
|
Lyu H, Yim WC, Yu Q. Genomic and Transcriptomic Insights into the Evolution of C4 Photosynthesis in Grasses. Genome Biol Evol 2024; 16:evae163. [PMID: 39066653 PMCID: PMC11319937 DOI: 10.1093/gbe/evae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
C4 photosynthesis has independently evolved over 62 times within 19 angiosperm families. The recurrent evolution of C4 photosynthesis appears to contradict the complex anatomical and biochemical modifications required for the transition from C3 to C4 photosynthesis. In this study, we conducted an integrated analysis of genomics and transcriptomics to elucidate the molecular underpinnings of convergent C4 evolution in the grass family. Our genome-wide exploration of C4-related gene families suggests that the expansion of these gene families may have played an important role in facilitating C4 evolution in the grass family. A phylogenomic synteny network analysis uncovered the emergence of C4 genes in various C4 grass lineages from a common ancestral gene pool. Moreover, through a comparison between non-C4 and C4 PEPCs, we pinpointed 14 amino acid sites exhibiting parallel adaptations. These adaptations, occurring post the BEP-PACMAD divergence, shed light on why all C4 origins in grasses are confined to the PACMAD clade. Furthermore, our study revealed that the ancestor of Chloridoideae grasses possessed a more favorable molecular preadaptation for C4 functions compared to the ancestor of Panicoideae grasses. This molecular preadaptation potentially explains why C4 photosynthesis evolved earlier in Chloridoideae than in Panicoideae and why the C3-to-C4 transition occurred once in Chloridoideae but multiple times in Panicoideae. Additionally, we found that C4 genes share similar cis-elements across independent C4 lineages. Notably, NAD-ME subtype grasses may have retained the ancestral regulatory machinery of the C4 NADP-ME gene, while NADP-ME subtype grasses might have undergone unique cis-element modifications.
Collapse
Affiliation(s)
- Haomin Lyu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
- Hawaii Agriculture Research Center, Kunia, HI 96759, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Qingyi Yu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
| |
Collapse
|
5
|
Yu H, Li Y, Han W, Bao L, Liu F, Ma Y, Pu Z, Zeng Q, Zhang L, Bao Z, Wang S. Pan-evolutionary and regulatory genome architecture delineated by an integrated macro- and microsynteny approach. Nat Protoc 2024; 19:1623-1678. [PMID: 38514839 DOI: 10.1038/s41596-024-00966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/20/2023] [Indexed: 03/23/2024]
Abstract
The forthcoming massive genome data generated by the Earth BioGenome Project will open up a new era of comparative genomics, for which genome synteny analysis provides an important framework. Profiling genome synteny represents an essential step in elucidating genome architecture, regulatory blocks/elements and their evolutionary history. Here we describe PanSyn, ( https://github.com/yhw320/PanSyn ), the most comprehensive and up-to-date genome synteny pipeline, providing step-by-step instructions and application examples to demonstrate its usage. PanSyn inherits both basic and advanced functions from existing popular tools, offering a user-friendly, highly customized approach for genome macrosynteny analysis and integrated pan-evolutionary and regulatory analysis of genome architecture, which are not yet available in public synteny software or tools. The advantages of PanSyn include: (i) advanced microsynteny analysis by functional profiling of microsynteny genes and associated regulatory elements; (ii) comprehensive macrosynteny analysis, including the inference of karyotype evolution from ancestors to extant species; and (iii) functional integration of microsynteny and macrosynteny for pan-evolutionary profiling of genome architecture and regulatory blocks, as well as integration with external functional genomics datasets from three- or four-dimensional genome and ENCODE projects. PanSyn requires basic knowledge of the Linux environment and Perl programming language and the ability to access a computer cluster, especially for large-scale genomic comparisons. Our protocol can be easily implemented by a competent graduate student or postdoc and takes several days to weeks to execute for dozens to hundreds of genomes. PanSyn provides yet the most comprehensive and powerful tool for integrated evolutionary and functional genomics.
Collapse
Affiliation(s)
- Hongwei Yu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
| | - Wentao Han
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fuyun Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuanting Ma
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Zhenmin Bao
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Laboratory for Marine Fisheries and Aquaculture, Laoshan Laboratory, Qingdao, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
6
|
Qian ZH, Li W, Wang QF, Liang SC, Wu S, Li ZZ, Chen JM. The chromosome-level genome of the submerged plant Cryptocoryne crispatula provides insights into the terrestrial-freshwater transition in Araceae. DNA Res 2024; 31:dsae003. [PMID: 38245835 PMCID: PMC10873505 DOI: 10.1093/dnares/dsae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
Plant terrestrialization (i.e. the transition to a terrestrial environment) is a significant evolutionary event that has been intensively studied. While certain plant lineages, particularly in angiosperms, have re-adapted to freshwater habitats after colonizing terrene, however, the molecular mechanism of the terrestrial-freshwater (T-F) transition remains limited. Here, the basal monocot Araceae was selected as the study object to explore the T-F transition adaptation mechanism by comparative genomic analysis. Our findings revealed that the substitution rates significantly increased in the lineage of freshwater Araceae, which may promote their adaptation to the freshwater habitat. Additionally, 20 gene sets across all four freshwater species displayed signs of positive selection contributing to tissue development and defense responses in freshwater plants. Comparative synteny analysis showed that genes specific to submerged plants were enriched in cellular respiration and photosynthesis. In contrast, floating plants were involved in regulating gene expression, suggesting that gene and genome duplications may provide the original material for plants to adapt to the freshwater environment. Our study provides valuable insights into the genomic aspects of the transition from terrestrial to aquatic environments in Araceae, laying the groundwork for future research in the angiosperm.
Collapse
Affiliation(s)
- Zhi-Hao Qian
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing-Feng Wang
- Plant Diversity Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shi-Chu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China
| | - Shuang Wu
- Guangxi Association for Science and Technology, Nanning 530023, China
| | - Zhi-Zhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jin-Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
7
|
Ferreira JS, Bruschi DP. Tracking the Diversity and Chromosomal Distribution of the Olfactory Receptor Gene Repertoires of Three Anurans Species. J Mol Evol 2023; 91:793-805. [PMID: 37906255 DOI: 10.1007/s00239-023-10135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Olfaction is a crucial capability for most vertebrates and is realized through olfactory receptors in the nasal cavity. The enormous diversity of olfactory receptors has been created by gene duplication, following a birth-and-death model of evolution. The olfactory receptor genes of the amphibians have received relatively little attention up to now, although recent studies have increased the number of species for which data are available. This study analyzed the diversity and chromosomal distribution of the OR genes of three anuran species (Engystomops pustulosus, Bufo bufo and Hymenochirus boettgeri). The OR genes were identified through searches for homologies, and sequence filtering and alignment using bioinformatic tools and scripts. A high diversity of OR genes was found in all three species, ranging from 917 in B. bufo to 1194 in H. boettgeri, and a total of 2076 OR genes in E. pustulosus. Six OR groups were recognized using an evolutionary gene tree analysis. While E. pustulosus has one of the highest numbers of genes of the gamma group (which detect airborne odorants) yet recorded in an anuran, B. bufo presented the smallest number of pseudogene sequences ever identified, with no pseudogenes in either the beta or epsilon groups. Although H. boettgeri shares many morphological adaptations for an aquatic lifestyle with Xenopus, and presented a similar number of genes related to the detection of water-soluble odorants, it had comparatively far fewer genes related to the detection of airborne odorants. This study is the first to describe the complete OR repertoire of the three study species and represents an important contribution to the understanding of the evolution and function of the sense of smell in vertebrates.
Collapse
Affiliation(s)
- Johnny Sousa Ferreira
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil
| | - Daniel Pacheco Bruschi
- Laboratório de Citogenética Evolutiva e Conservação Animal (LabCECA), Departamento de Genética, Universidade Federal do Paraná (UFPR), Paraná, Brazil.
| |
Collapse
|