1
|
de Oliveira GB, Pedrini H, Dias Z. SUPERMAGO: Protein Function Prediction Based on Transformer Embeddings. Proteins 2025; 93:981-996. [PMID: 39711079 DOI: 10.1002/prot.26782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Recent technological advancements have enabled the experimental determination of amino acid sequences for numerous proteins. However, analyzing protein functions, which is essential for understanding their roles within cells, remains a challenging task due to the associated costs and time constraints. To address this challenge, various computational approaches have been proposed to aid in the categorization of protein functions, mainly utilizing amino acid sequences. In this study, we introduce SUPERMAGO, a method that leverages amino acid sequences to predict protein functions. Our approach employs Transformer architectures, pre-trained on protein data, to extract features from the sequences. We use multilayer perceptrons for classification and a stacking neural network to aggregate the predictions, which significantly enhances the performance of our method. We also present SUPERMAGO+, an ensemble of SUPERMAGO and DIAMOND, based on neural networks that assign different weights to each term, offering a novel weighting mechanism compared with existing methods in the literature. Additionally, we introduce SUPERMAGO+Web, a web server-compatible version of SUPERMAGO+ designed to operate with reduced computational resources. Both SUPERMAGO and SUPERMAGO+ consistently outperformed state-of-the-art approaches in our evaluations, establishing them as leading methods for this task when considering only amino acid sequence information.
Collapse
Affiliation(s)
| | - Helio Pedrini
- Institute of Computing, University of Campinas, Campinas, Brazil
| | - Zanoni Dias
- Institute of Computing, University of Campinas, Campinas, Brazil
| |
Collapse
|
2
|
Zhang H, Sun Y, Wang Y, Luo X, Liu Y, Chen B, Jin X, Zhu D. GTPLM-GO: Enhancing Protein Function Prediction Through Dual-Branch Graph Transformer and Protein Language Model Fusing Sequence and Local-Global PPI Information. Int J Mol Sci 2025; 26:4088. [PMID: 40362328 PMCID: PMC12072039 DOI: 10.3390/ijms26094088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Currently, protein-protein interaction (PPI) networks have become an essential data source for protein function prediction. However, methods utilizing graph neural networks (GNNs) face significant challenges in modeling PPI networks. A primary issue is over-smoothing, which occurs when multiple GNN layers are stacked to capture global information. This architectural limitation inherently impairs the integration of local and global information within PPI networks, thereby limiting the accuracy of protein function prediction. To effectively utilize information within PPI networks, we propose GTPLM-GO, a protein function prediction method based on a dual-branch Graph Transformer and protein language model. The dual-branch Graph Transformer achieves the collaborative modeling of local and global information in PPI networks through two branches: a graph neural network and a linear attention-based Transformer encoder. GTPLM-GO integrates local-global PPI information with the functional semantic encoding constructed by the protein language model, overcoming the issue of inadequate information extraction in existing methods. Experimental results demonstrate that GTPLM-GO outperforms advanced network-based and sequence-based methods on PPI network datasets of varying scales.
Collapse
Affiliation(s)
- Haotian Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China; (H.Z.); (Y.S.); (Y.W.); (B.C.)
| | - Yundong Sun
- School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China; (H.Z.); (Y.S.); (Y.W.); (B.C.)
- Department of Electronic Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yansong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China; (H.Z.); (Y.S.); (Y.W.); (B.C.)
| | - Xiaoling Luo
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Yumeng Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China;
| | - Bin Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China; (H.Z.); (Y.S.); (Y.W.); (B.C.)
| | - Xiaopeng Jin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China;
| | - Dongjie Zhu
- School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China; (H.Z.); (Y.S.); (Y.W.); (B.C.)
| |
Collapse
|
3
|
Kim HR, Ji H, Kim GB, Lee SY. Enzyme functional classification using artificial intelligence. Trends Biotechnol 2025:S0167-7799(25)00088-5. [PMID: 40155269 DOI: 10.1016/j.tibtech.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/01/2025]
Abstract
Enzymes are essential for cellular metabolism, and elucidating their functions is critical for advancing biochemical research. However, experimental methods are often time consuming and resource intensive. To address this, significant efforts have been directed toward applying artificial intelligence (AI) to enzyme function prediction, enabling high-throughput and scalable approaches. In this review, we discuss advances in AI-driven enzyme functional annotation, transitioning from traditional machine learning (ML) methods to state-of-the-art deep learning approaches. We highlight how deep learning enables models to automatically extract features from raw data without manual intervention, leading to enhanced performance. Finally, we discuss the discovery of novel enzyme functions and generation of de novo enzymes through the integration of generative AIs and bio big data as future research directions.
Collapse
Affiliation(s)
- Ha Rim Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongkeun Ji
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Center for Synthetic Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Nammi B, Jayasinghe-Arachchige VM, Madugula SS, Artiles M, Radler CN, Pham T, Liu J, Wang S. CasGen: A Regularized Generative Model for CRISPR Cas Protein Design with Classification and Margin-Based Optimization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640911. [PMID: 40060553 PMCID: PMC11888460 DOI: 10.1101/2025.02.28.640911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated proteins (Cas) systems have revolutionized genome editing by providing high precision and versatility. However, most genome editing applications rely on a limited number of well-characterized Cas9 and Cas12 variants, constraining the potential for broader genome engineering applications. In this study, we extensively explored Cas9 and Cas12 proteins and developed CasGen, a novel transformer-based deep generative model with margin-based latent space regularization to enhance the quality of newly generative Cas9 and Cas12 proteins. Specifically, CasGen employs a strategies that combine classification to filter out non-Cas sequences, Bayesian optimization of the latent space to guide functionally relevant designs, and thorough structural validation using AlphaFold-based analyses to ensure robust protein generation. We collected a comprehensive dataset with 3,021 Cas9, 597 Cas12, and 597 Non-Cas protein sequences from reputable biological databases such as InterPro and PDB. To validate the generated proteins, we performed sequence alignment using the BLAST tool to ensure novelty and filter out highly similar sequences to existing Cas proteins. Structural prediction using AlphaFold2 and AlphaFold3 confirmed that the generated proteins exhibit high structural similarity to known Cas9 and Cas12 variants, with TM-scores between 0.70 and 0.85 and root-mean-square deviation (RMSD) values below 2.00 Å. Sequence identity analysis further demonstrated that the generated Cas9 orthologs exhibited 28% to 55% identity with known variants, while Cas12a variants show up to 48% identity. Our results demonstrate that the proposed Cas generative model has significant potential to expand the genome editing toolkit by designing diverse Cas proteins that retain functional integrity. The developed deep generative approach offers a promising avenue for synthetic biology and therapeutic applications, enableling the development of more precise and versatile Cas-based genome editing tools.
Collapse
Affiliation(s)
- Bharani Nammi
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington, Arlington, Texas, United States
| | - Vindi M. Jayasinghe-Arachchige
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Sita Sirisha Madugula
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Maria Artiles
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Charlene Norgan Radler
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Tyler Pham
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing and Systems Engineering, University of Texas at Arlington, Arlington, Texas, United States
| |
Collapse
|
5
|
Zhai Z, Xu S, Ma W, Niu N, Qu C, Zong C. LGS-PPIS: A Local-Global Structural Information Aggregation Framework for Predicting Protein-Protein Interaction Sites. Proteins 2025; 93:716-727. [PMID: 39520116 DOI: 10.1002/prot.26763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Exploring protein-protein interaction sites (PPIS) is of significance to elucidating the intrinsic mechanisms of diverse biological processes. On this basis, recent studies have applied deep learning-based technologies to overcome the high cost of wet experiments for PPIS determination. However, the existing methods still suffer from two limitations that remain to be solved. Firstly, the process of feature aggregation in most methods only took into account node features, but ignored the complex edge features of the target residue to its neighbor residues, resulting in insufficient local feature extraction. Secondly, such feature aggregation was limited to aggregating spatially adjacent residues, and could not capture the "remote" residues that played a critical role in determining PPIS, which can be summed up as the lack of global feature at the residue level. To break the above limitations, a local-global structural information aggregation framework, LGS-PPIS, was proposed in this study, including two modules of edge-aware graph convolutional network (EA-GCN) and self-attention integrated with initial residual and identity mapping (SA-RIM), which achieved the aggregation of local and global information for PPIS prediction. Evaluation results of LGS-PPIS showed that the proposed method outperformed state-of-the-art deep learning methods on three widely used PPIS prediction benchmarks. Besides, the results of ablation experiments demonstrated that the local features from spatially adjacent residues and global features from "remote" residues separately captured by EA-GCN and SA-RIM could benefit the model performance. Among them, the former was shown to have a more significant role in the PPIS prediction.
Collapse
Affiliation(s)
- Zhengli Zhai
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Shiya Xu
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Wenjian Ma
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Niuwangjie Niu
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Chunyu Qu
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| | - Chao Zong
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao, China
| |
Collapse
|
6
|
Wang Y, Sun Y, Lin B, Zhang H, Luo X, Liu Y, Jin X, Zhu D. SEGT-GO: a graph transformer method based on PPI serialization and explanatory artificial intelligence for protein function prediction. BMC Bioinformatics 2025; 26:46. [PMID: 39930351 PMCID: PMC11808960 DOI: 10.1186/s12859-025-06059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/20/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND A massive amount of protein sequences have been obtained, but their functions remain challenging to discern. In recent research on protein function prediction, Protein-Protein Interaction (PPI) Networks have played a crucial role. Uncovering potential function relationships between distant proteins within PPI networks is essential for improving the accuracy of protein function prediction. Most current studies attempt to capture these distant relationships by stacking graph network layers, but performance gains diminish as the number of layers increases. RESULTS To further explore the potential functional relationships between multi-hop proteins in PPI networks, this paper proposes SEGT-GO, a Graph Transformer method based on PPI multi-hop neighborhood Serialization and Explainable artificial intelligence for large-scale multispecies protein function prediction. The multi-hop neighborhood serialization maps multi-hop information in the PPI Network into serialized feature embeddings, enabling the Graph Transformer to learn deeper functional features within the PPI Network. Based on game theory, the SHAP eXplainable Artificial Intelligence (XAI) framework optimizes model input and filters out feature noise, enhancing model performance. CONCLUSIONS Compared to the advanced network method DeepGraphGO, SEGT-GO achieves more competitive results in standard large-scale datasets and superior results on small ones, validating its ability to extract functional information from deep proteins. Furthermore, SEGT-GO achieves superior results in cross-species learning and prediction of the functions of unseen proteins, further proving the method's strong generalization.
Collapse
Affiliation(s)
- Yansong Wang
- School of Computer Science and Technology, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
| | - Yundong Sun
- School of Computer Science and Technology, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
- Department of Electronic Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Baohui Lin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Haotian Zhang
- School of Computer Science and Technology, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
| | - Xiaoling Luo
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yumeng Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaopeng Jin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Dongjie Zhu
- School of Computer Science and Technology, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China.
| |
Collapse
|
7
|
Luo J, Zhao K, Chen J, Yang C, Qu F, Liu Y, Jin X, Yan K, Zhang Y, Liu B. iMFP-LG: Identify Novel Multi-functional Peptides Using Protein Language Models and Graph-based Deep Learning. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae084. [PMID: 39585308 PMCID: PMC12011362 DOI: 10.1093/gpbjnl/qzae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Functional peptides are short amino acid fragments that have a wide range of beneficial functions for living organisms. The majority of previous studies have focused on mono-functional peptides, but an increasing number of multi-functional peptides have been discovered. Although there have been enormous experimental efforts to assay multi-functional peptides, only a small portion of millions of known peptides has been explored. The development of effective and accurate techniques for identifying multi-functional peptides can facilitate their discovery and mechanistic understanding. In this study, we presented iMFP-LG, a method for multi-functional peptide identification based on protein language models (pLMs) and graph attention networks (GATs). Our comparative analyses demonstrated that iMFP-LG outperformed the state-of-the-art methods in identifying both multi-functional bioactive peptides and multi-functional therapeutic peptides. The interpretability of iMFP-LG was also illustrated by visualizing attention patterns in pLMs and GATs. Regarding the outstanding performance of iMFP-LG on the identification of multi-functional peptides, we employed iMFP-LG to screen novel peptides with both anti-microbial and anti-cancer functions from millions of known peptides in the UniRef90 database. As a result, eight candidate peptides were identified, among which one candidate was validated to process both anti-bacterial and anti-cancer properties through molecular structure alignment and biological experiments. We anticipate that iMFP-LG can assist in the discovery of multi-functional peptides and contribute to the advancement of peptide drug design.
Collapse
Affiliation(s)
- Jiawei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Kejuan Zhao
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Junjie Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Caihua Yang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Fuchuan Qu
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yumeng Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518055, China
| | - Xiaopeng Jin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518055, China
| | - Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 10081, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 10081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 10081, China
| |
Collapse
|
8
|
Ma W, Bi X, Jiang H, Wei Z, Zhang S. Annotating protein functions via fusing multiple biological modalities. Commun Biol 2024; 7:1705. [PMID: 39730886 DOI: 10.1038/s42003-024-07411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
Understanding the function of proteins is of great significance for revealing disease pathogenesis and discovering new targets. Benefiting from the explosive growth of the protein universal, deep learning has been applied to accelerate the protein annotation cycle from different biological modalities. However, most existing deep learning-based methods not only fail to effectively fuse different biological modalities, resulting in low-quality protein representations, but also suffer from the convergence of suboptimal solution caused by sparse label representations. Aiming at the above issue, we propose a multiprocedural approach for fusing heterogeneous biological modalities and annotating protein functions, i.e., MIF2GO (Multimodal Information Fusion to infer Gene Ontology terms), which sequentially fuses up to six biological modalities ranging from different biological levels in three steps, thus leading to powerful protein representations. Evaluation results on seven benchmark datasets show that the proposed method not only considerably outperforms state-of-the-art performance, but also demonstrates great robustness and generalizability across species. Besides, we also present biological insights into the associations between those modalities and protein functions. This research provides a robust framework for integrating multimodal biological data, offering a scalable solution for protein function annotation, ultimately facilitating advancements in precision medicine and the discovery of novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenjian Ma
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Xiangpeng Bi
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Huasen Jiang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Zhiqiang Wei
- College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Shugang Zhang
- College of Computer Science and Technology, Ocean University of China, Qingdao, China.
| |
Collapse
|
9
|
Liu X, Luo J, Wang X, Zhang Y, Chen J. Directed evolution of antimicrobial peptides using multi-objective zeroth-order optimization. Brief Bioinform 2024; 26:bbae715. [PMID: 39800873 PMCID: PMC11725395 DOI: 10.1093/bib/bbae715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Antimicrobial peptides (AMPs) emerge as a type of promising therapeutic compounds that exhibit broad spectrum antimicrobial activity with high specificity and good tolerability. Natural AMPs usually need further rational design for improving antimicrobial activity and decreasing toxicity to human cells. Although several algorithms have been developed to optimize AMPs with desired properties, they explored the variations of AMPs in a discrete amino acid sequence space, usually suffering from low efficiency, lack diversity, and local optimum. In this work, we propose a novel directed evolution method, named PepZOO, for optimizing multi-properties of AMPs in a continuous representation space guided by multi-objective zeroth-order optimization. PepZOO projects AMPs from a discrete amino acid sequence space into continuous latent representation space by a variational autoencoder. Subsequently, the latent embeddings of prototype AMPs are taken as start points and iteratively updated according to the guidance of multi-objective zeroth-order optimization. Experimental results demonstrate PepZOO outperforms state-of-the-art methods on improving the multi-properties in terms of antimicrobial function, activity, toxicity, and binding affinity to the targets. Molecular docking and molecular dynamics simulations are further employed to validate the effectiveness of our method. Moreover, PepZOO can reveal important motifs which are required to maintain a particular property during the evolution by aligning the evolutionary sequences. PepZOO provides a novel research paradigm that optimizes AMPs by exploring property change instead of exploring sequence mutations, accelerating the discovery of potential therapeutic peptides.
Collapse
Affiliation(s)
- Xianliang Liu
- School of Computer Science and Technology, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Jiawei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Xinyan Wang
- Core Research Facility, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Yang Zhang
- School of Science, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China
| | - Junjie Chen
- School of Computer Science and Technology, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China
| |
Collapse
|
10
|
Chen Z, Luo Q. DualNetGO: a dual network model for protein function prediction via effective feature selection. Bioinformatics 2024; 40:btae437. [PMID: 38963311 PMCID: PMC11538015 DOI: 10.1093/bioinformatics/btae437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024] Open
Abstract
MOTIVATION Protein-protein interaction (PPI) networks are crucial for automatically annotating protein functions. As multiple PPI networks exist for the same set of proteins that capture properties from different aspects, it is a challenging task to effectively utilize these heterogeneous networks. Recently, several deep learning models have combined PPI networks from all evidence, or concatenated all graph embeddings for protein function prediction. However, the lack of a judicious selection procedure prevents the effective harness of information from different PPI networks, as these networks vary in densities, structures, and noise levels. Consequently, combining protein features indiscriminately could increase the noise level, leading to decreased model performance. RESULTS We develop DualNetGO, a dual-network model comprised of a Classifier and a Selector, to predict protein functions by effectively selecting features from different sources including graph embeddings of PPI networks, protein domain, and subcellular location information. Evaluation of DualNetGO on human and mouse datasets in comparison with other network-based models shows at least 4.5%, 6.2%, and 14.2% improvement on Fmax in BP, MF, and CC gene ontology categories, respectively, for human, and 3.3%, 10.6%, and 7.7% improvement on Fmax for mouse. We demonstrate the generalization capability of our model by training and testing on the CAFA3 data, and show its versatility by incorporating Esm2 embeddings. We further show that our model is insensitive to the choice of graph embedding method and is time- and memory-saving. These results demonstrate that combining a subset of features including PPI networks and protein attributes selected by our model is more effective in utilizing PPI network information than only using one kind of or concatenating graph embeddings from all kinds of PPI networks. AVAILABILITY AND IMPLEMENTATION The source code of DualNetGO and some of the experiment data are available at: https://github.com/georgedashen/DualNetGO.
Collapse
Affiliation(s)
- Zhuoyang Chen
- Data Science and Analytics Thrust, Information Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
| | - Qiong Luo
- Data Science and Analytics Thrust, Information Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, 511400, China
- HKUST, Hong Kong SAR, China
| |
Collapse
|
11
|
Lin B, Luo X, Liu Y, Jin X. A comprehensive review and comparison of existing computational methods for protein function prediction. Brief Bioinform 2024; 25:bbae289. [PMID: 39003530 PMCID: PMC11246557 DOI: 10.1093/bib/bbae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Indexed: 07/15/2024] Open
Abstract
Protein function prediction is critical for understanding the cellular physiological and biochemical processes, and it opens up new possibilities for advancements in fields such as disease research and drug discovery. During the past decades, with the exponential growth of protein sequence data, many computational methods for predicting protein function have been proposed. Therefore, a systematic review and comparison of these methods are necessary. In this study, we divide these methods into four different categories, including sequence-based methods, 3D structure-based methods, PPI network-based methods and hybrid information-based methods. Furthermore, their advantages and disadvantages are discussed, and then their performance is comprehensively evaluated and compared. Finally, we discuss the challenges and opportunities present in this field.
Collapse
Affiliation(s)
- Baohui Lin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Xiaoling Luo
- Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Shenzhen, Guangdong, China
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518061, China
| | - Yumeng Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Xiaopeng Jin
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| |
Collapse
|
12
|
Zheng L, Shi S, Lu M, Fang P, Pan Z, Zhang H, Zhou Z, Zhang H, Mou M, Huang S, Tao L, Xia W, Li H, Zeng Z, Zhang S, Chen Y, Li Z, Zhu F. AnnoPRO: a strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding. Genome Biol 2024; 25:41. [PMID: 38303023 PMCID: PMC10832132 DOI: 10.1186/s13059-024-03166-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Protein function annotation has been one of the longstanding issues in biological sciences, and various computational methods have been developed. However, the existing methods suffer from a serious long-tail problem, with a large number of GO families containing few annotated proteins. Herein, an innovative strategy named AnnoPRO was therefore constructed by enabling sequence-based multi-scale protein representation, dual-path protein encoding using pre-training, and function annotation by long short-term memory-based decoding. A variety of case studies based on different benchmarks were conducted, which confirmed the superior performance of AnnoPRO among available methods. Source code and models have been made freely available at: https://github.com/idrblab/AnnoPRO and https://zenodo.org/records/10012272.
Collapse
Affiliation(s)
- Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pan Fang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhimeng Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Weiqi Xia
- Pharmaceutical Department, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenyu Zeng
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Shun Zhang
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Zhaorong Li
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Industry Solutions Research and Development, Alibaba Cloud Computing, Hangzhou, 330110, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
13
|
Yan K, Feng J, Huang J, Wu H. iDRPro-SC: identifying DNA-binding proteins and RNA-binding proteins based on subfunction classifiers. Brief Bioinform 2023:bbad251. [PMID: 37405873 DOI: 10.1093/bib/bbad251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Nucleic acid-binding proteins are proteins that interact with DNA and RNA to regulate gene expression and transcriptional control. The pathogenesis of many human diseases is related to abnormal gene expression. Therefore, recognizing nucleic acid-binding proteins accurately and efficiently has important implications for disease research. To address this question, some scientists have proposed the method of using sequence information to identify nucleic acid-binding proteins. However, different types of nucleic acid-binding proteins have different subfunctions, and these methods ignore their internal differences, so the performance of the predictor can be further improved. In this study, we proposed a new method, called iDRPro-SC, to predict the type of nucleic acid-binding proteins based on the sequence information. iDRPro-SC considers the internal differences of nucleic acid-binding proteins and combines their subfunctions to build a complete dataset. Additionally, we used an ensemble learning to characterize and predict nucleic acid-binding proteins. The results of the test dataset showed that iDRPro-SC achieved the best prediction performance and was superior to the other existing nucleic acid-binding protein prediction methods. We have established a web server that can be accessed online: http://bliulab.net/iDRPro-SC.
Collapse
Affiliation(s)
- Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jiawei Feng
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Huang
- Huajian Yutong Technology (Beijing) Co., Ltd
- State Key Laboratory of Media Convergence Production Technology and Systems, Beijing China,100803
- Xinhua New Media Culture Communication Co., Ltd
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Lee M. Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review. Molecules 2023; 28:5169. [PMID: 37446831 DOI: 10.3390/molecules28135169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Deep learning, a potent branch of artificial intelligence, is steadily leaving its transformative imprint across multiple disciplines. Within computational biology, it is expediting progress in the understanding of Protein-Protein Interactions (PPIs), key components governing a wide array of biological functionalities. Hence, an in-depth exploration of PPIs is crucial for decoding the intricate biological system dynamics and unveiling potential avenues for therapeutic interventions. As the deployment of deep learning techniques in PPI analysis proliferates at an accelerated pace, there exists an immediate demand for an exhaustive review that encapsulates and critically assesses these novel developments. Addressing this requirement, this review offers a detailed analysis of the literature from 2021 to 2023, highlighting the cutting-edge deep learning methodologies harnessed for PPI analysis. Thus, this review stands as a crucial reference for researchers in the discipline, presenting an overview of the recent studies in the field. This consolidation helps elucidate the dynamic paradigm of PPI analysis, the evolution of deep learning techniques, and their interdependent dynamics. This scrutiny is expected to serve as a vital aid for researchers, both well-established and newcomers, assisting them in maneuvering the rapidly shifting terrain of deep learning applications in PPI analysis.
Collapse
Affiliation(s)
- Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
15
|
Li J, Wu Z, Lin W, Luo J, Zhang J, Chen Q, Chen J. iEnhancer-ELM: improve enhancer identification by extracting position-related multiscale contextual information based on enhancer language models. BIOINFORMATICS ADVANCES 2023; 3:vbad043. [PMID: 37113248 PMCID: PMC10125906 DOI: 10.1093/bioadv/vbad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/04/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Motivation Enhancers are important cis-regulatory elements that regulate a wide range of biological functions and enhance the transcription of target genes. Although many feature extraction methods have been proposed to improve the performance of enhancer identification, they cannot learn position-related multiscale contextual information from raw DNA sequences. Results In this article, we propose a novel enhancer identification method (iEnhancer-ELM) based on BERT-like enhancer language models. iEnhancer-ELM tokenizes DNA sequences with multi-scale k-mers and extracts contextual information of different scale k-mers related with their positions via an multi-head attention mechanism. We first evaluate the performance of different scale k-mers, then ensemble them to improve the performance of enhancer identification. The experimental results on two popular benchmark datasets show that our model outperforms state-of-the-art methods. We further illustrate the interpretability of iEnhancer-ELM. For a case study, we discover 30 enhancer motifs via a 3-mer-based model, where 12 of motifs are verified by STREME and JASPAR, demonstrating our model has a potential ability to unveil the biological mechanism of enhancer. Availability and implementation The models and associated code are available at https://github.com/chen-bioinfo/iEnhancer-ELM. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Wenhao Lin
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Jiawei Luo
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Jun Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Qingcai Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | | |
Collapse
|