1
|
da Silva JEH, Bernardino HS, de Oliveira IL, Camata JJ. A survey of the methodological process of modeling, inference, and evaluation of gene regulatory networks using scRNA-Seq data. Biosystems 2025; 253:105464. [PMID: 40409400 DOI: 10.1016/j.biosystems.2025.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/20/2025] [Accepted: 04/17/2025] [Indexed: 05/25/2025]
Abstract
The advent of scRNA-Seq sequencing technology has provided unprecedented resolutions in the analysis of gene regulatory networks (GRNs) at the single-cell level. However, new technical and methodological challenges also emerged. Factors such as the large number of zeros reported in expression levels, the biological variation due to the stochastic nature of gene expression, environmental niche, and effects created by the cell cycle make it difficult to correctly interpret the data obtained in the sequencing stage. On the other hand, the development of methods for the inference of GRNs, specifically using scRNA-Seq technology, proved to be of similar quality to random predictors. The lack of adequate pre-processing of gene expression data, including selection steps for subsets of genes of interest, smoothing, and discretization of gene expression, in addition to the different ways of modeling networks and network motifs, are factors that affect the performance of inference approaches. Finally, the lack of knowledge about the ground-truth network and the non-standardization of appropriate metrics to measure the quality of inferred networks make the process of comparing performance between algorithms a major problem, given the unbalanced nature of the data and the interpretation bias caused by the chosen metric. This article brings these issues to light, aiming to show how these factors influence both the inference process and the performance evaluation of inferred networks, through comparative computational experiments and provides suggestions for a more robust methodological process for researchers dealing with inference of GRNs.
Collapse
Affiliation(s)
- José Eduardo H da Silva
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil.
| | - Heder S Bernardino
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil
| | - Itamar L de Oliveira
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil
| | - José J Camata
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil
| |
Collapse
|
2
|
Lederer AR, Leonardi M, Talamanca L, Bobrovskiy DM, Herrera A, Droin C, Khven I, Carvalho HJF, Valente A, Dominguez Mantes A, Mulet Arabí P, Pinello L, Naef F, La Manno G. Statistical inference with a manifold-constrained RNA velocity model uncovers cell cycle speed modulations. Nat Methods 2024; 21:2271-2286. [PMID: 39482463 PMCID: PMC11621032 DOI: 10.1038/s41592-024-02471-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/15/2024] [Indexed: 11/03/2024]
Abstract
Across biological systems, cells undergo coordinated changes in gene expression, resulting in transcriptome dynamics that unfold within a low-dimensional manifold. While low-dimensional dynamics can be extracted using RNA velocity, these algorithms can be fragile and rely on heuristics lacking statistical control. Moreover, the estimated vector field is not dynamically consistent with the traversed gene expression manifold. To address these challenges, we introduce a Bayesian model of RNA velocity that couples velocity field and manifold estimation in a reformulated, unified framework, identifying the parameters of an explicit dynamical system. Focusing on the cell cycle, we implement VeloCycle to study gene regulation dynamics on one-dimensional periodic manifolds and validate its ability to infer cell cycle periods using live imaging. We also apply VeloCycle to reveal speed differences in regionally defined progenitors and Perturb-seq gene knockdowns. Overall, VeloCycle expands the single-cell RNA sequencing analysis toolkit with a modular and statistically consistent RNA velocity inference framework.
Collapse
Affiliation(s)
- Alex R Lederer
- Laboratory of Brain Development and Biological Data Science, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maxine Leonardi
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorenzo Talamanca
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Daniil M Bobrovskiy
- Laboratory of Brain Development and Biological Data Science, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Antonio Herrera
- Laboratory of Brain Development and Biological Data Science, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Colas Droin
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Irina Khven
- Laboratory of Brain Development and Biological Data Science, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hugo J F Carvalho
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alessandro Valente
- Laboratory of Brain Development and Biological Data Science, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Albert Dominguez Mantes
- Laboratory of Brain Development and Biological Data Science, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Laboratory of Bioimage Analysis and Computational Microscopy, Institute of Bioengineering, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pau Mulet Arabí
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luca Pinello
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felix Naef
- Laboratory of Computational and Systems Biology, Institute of Bioengineering, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Gioele La Manno
- Laboratory of Brain Development and Biological Data Science, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
3
|
Wang Y, Zheng P, Cheng YC, Wang Z, Aravkin A. WENDY: Covariance dynamics based gene regulatory network inference. Math Biosci 2024; 377:109284. [PMID: 39168402 DOI: 10.1016/j.mbs.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. For a widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.
Collapse
Affiliation(s)
- Yue Wang
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, 10027, NY, USA.
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, Seattle, 98195, WA, USA; Department of Health Metrics Sciences, University of Washington, Seattle, 98195, WA, USA
| | - Yu-Chen Cheng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, 10065, NY, USA
| | - Aleksandr Aravkin
- Department of Applied Mathematics, University of Washington, Seattle, 98195, WA, USA
| |
Collapse
|
4
|
Ramirez DA, Lu M. Dissecting reversible and irreversible single cell state transitions from gene regulatory networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610498. [PMID: 39257745 PMCID: PMC11384016 DOI: 10.1101/2024.08.30.610498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Understanding cell state transitions and their governing regulatory mechanisms remains one of the fundamental questions in biology. We develop a computational method, state transition inference using cross-cell correlations (STICCC), for predicting reversible and irreversible cell state transitions at single-cell resolution by using gene expression data and a set of gene regulatory interactions. The method is inspired by the fact that the gene expression time delays between regulators and targets can be exploited to infer past and future gene expression states. From applications to both simulated and experimental single-cell gene expression data, we show that STICCC-inferred vector fields capture basins of attraction and irreversible fluxes. By connecting regulatory information with systems' dynamical behaviors, STICCC reveals how network interactions influence reversible and irreversible state transitions. Compared to existing methods that infer pseudotime and RNA velocity, STICCC provides complementary insights into the gene regulation of cell state transitions.
Collapse
Affiliation(s)
- Daniel A. Ramirez
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Loers JU, Vermeirssen V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief Bioinform 2024; 25:bbae382. [PMID: 39207727 PMCID: PMC11359808 DOI: 10.1093/bib/bbae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Eukaryotic gene regulation is a combinatorial, dynamic, and quantitative process that plays a vital role in development and disease and can be modeled at a systems level in gene regulatory networks (GRNs). The wealth of multi-omics data measured on the same samples and even on the same cells has lifted the field of GRN inference to the next stage. Combinations of (single-cell) transcriptomics and chromatin accessibility allow the prediction of fine-grained regulatory programs that go beyond mere correlation of transcription factor and target gene expression, with enhancer GRNs (eGRNs) modeling molecular interactions between transcription factors, regulatory elements, and target genes. In this review, we highlight the key components for successful (e)GRN inference from (sc)RNA-seq and (sc)ATAC-seq data exemplified by state-of-the-art methods as well as open challenges and future developments. Moreover, we address preprocessing strategies, metacell generation and computational omics pairing, transcription factor binding site detection, and linear and three-dimensional approaches to identify chromatin interactions as well as dynamic and causal eGRN inference. We believe that the integration of transcriptomics together with epigenomics data at a single-cell level is the new standard for mechanistic network inference, and that it can be further advanced with integrating additional omics layers and spatiotemporal data, as well as with shifting the focus towards more quantitative and causal modeling strategies.
Collapse
Affiliation(s)
- Jens Uwe Loers
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Vanessa Vermeirssen
- Lab for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Technologiepark 71, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Lederer AR, Leonardi M, Talamanca L, Herrera A, Droin C, Khven I, Carvalho HJF, Valente A, Mantes AD, Arabí PM, Pinello L, Naef F, Manno GL. Statistical inference with a manifold-constrained RNA velocity model uncovers cell cycle speed modulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576093. [PMID: 38328127 PMCID: PMC10849531 DOI: 10.1101/2024.01.18.576093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Across a range of biological processes, cells undergo coordinated changes in gene expression, resulting in transcriptome dynamics that unfold within a low-dimensional manifold. Single-cell RNA-sequencing (scRNA-seq) only measures temporal snapshots of gene expression. However, information on the underlying low-dimensional dynamics can be extracted using RNA velocity, which models unspliced and spliced RNA abundances to estimate the rate of change of gene expression. Available RNA velocity algorithms can be fragile and rely on heuristics that lack statistical control. Moreover, the estimated vector field is not dynamically consistent with the traversed gene expression manifold. Here, we develop a generative model of RNA velocity and a Bayesian inference approach that solves these problems. Our model couples velocity field and manifold estimation in a reformulated, unified framework, so as to coherently identify the parameters of an autonomous dynamical system. Focusing on the cell cycle, we implemented VeloCycle to study gene regulation dynamics on one-dimensional periodic manifolds and validated using live-imaging its ability to infer actual cell cycle periods. We benchmarked RNA velocity inference with sensitivity analyses and demonstrated one- and multiple-sample testing. We also conducted Markov chain Monte Carlo inference on the model, uncovering key relationships between gene-specific kinetics and our gene-independent velocity estimate. Finally, we applied VeloCycle to in vivo samples and in vitro genome-wide Perturb-seq, revealing regionally-defined proliferation modes in neural progenitors and the effect of gene knockdowns on cell cycle speed. Ultimately, VeloCycle expands the scRNA-seq analysis toolkit with a modular and statistically rigorous RNA velocity inference framework.
Collapse
|
7
|
Jackson CA, Beheler-Amass M, Tjärnberg A, Suresh I, Hickey ASM, Bonneau R, Gresham D. Simultaneous estimation of gene regulatory network structure and RNA kinetics from single cell gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558277. [PMID: 37790443 PMCID: PMC10542544 DOI: 10.1101/2023.09.21.558277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Cells respond to environmental and developmental stimuli by remodeling their transcriptomes through regulation of both mRNA transcription and mRNA decay. A central goal of biology is identifying the global set of regulatory relationships between factors that control mRNA production and degradation and their target transcripts and construct a predictive model of gene expression. Regulatory relationships are typically identified using transcriptome measurements and causal inference algorithms. RNA kinetic parameters are determined experimentally by employing run-on or metabolic labeling (e.g. 4-thiouracil) methods that allow transcription and decay rates to be separately measured. Here, we develop a deep learning model, trained with single-cell RNA-seq data, that both infers causal regulatory relationships and estimates RNA kinetic parameters. The resulting in silico model predicts future gene expression states and can be perturbed to simulate the effect of transcription factor changes. We acquired model training data by sequencing the transcriptomes of 175,000 individual Saccharomyces cerevisiae cells that were subject to an external perturbation and continuously sampled over a one hour period. The rate of change for each transcript was calculated on a per-cell basis to estimate RNA velocity. We then trained a deep learning model with transcriptome and RNA velocity data to calculate time-dependent estimates of mRNA production and decay rates. By separating RNA velocity into transcription and decay rates, we show that rapamycin treatment causes existing ribosomal protein transcripts to be rapidly destabilized, while production of new transcripts gradually slows over the course of an hour. The neural network framework we present is designed to explicitly model causal regulatory relationships between transcription factors and their genes, and shows superior performance to existing models on the basis of recovery of known regulatory relationships. We validated the predictive power of the model by perturbing transcription factors in silico and comparing transcriptome-wide effects with experimental data. Our study represents the first step in constructing a complete, predictive, biophysical model of gene expression regulation.
Collapse
Affiliation(s)
- Christopher A Jackson
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Maggie Beheler-Amass
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Andreas Tjärnberg
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Ina Suresh
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Angela Shang-mei Hickey
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | | | - David Gresham
- Center For Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|