1
|
Cirinciani M, Da Pozzo E, Trincavelli ML, Milazzo P, Martini C. Drug Mechanism: A bioinformatic update. Biochem Pharmacol 2024; 228:116078. [PMID: 38402909 DOI: 10.1016/j.bcp.2024.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
A drug Mechanism of Action (MoA) is a complex biological phenomenon that describes how a bioactive compound produces a pharmacological effect. The complete knowledge of MoA is fundamental to fully understanding the drug activity. Over the years, many experimental methods have been developed and a huge quantity of data has been produced. Nowadays, considering the increasing omics data availability and the improvement of the accessible computational resources, the study of a drug MoA is conducted by integrating experimental and bioinformatics approaches. The development of new in silico solutions for this type of analysis is continuously ongoing; herein, an updating review on such bioinformatic methods is presented. The methodologies cited are based on multi-omics data integration in biochemical networks and Machine Learning (ML). The multiple types of usable input data and the advantages and disadvantages of each method have been analyzed, with a focus on their applications. Three specific research areas (i.e. cancer drug development, antibiotics discovery, and drug repurposing) have been chosen for their importance in the drug discovery fields in which the study of drug MoA, through novel bioinformatics approaches, is particularly productive.
Collapse
Affiliation(s)
- Martina Cirinciani
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| | - Maria Letizia Trincavelli
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy
| | - Paolo Milazzo
- Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy; Department of Computer Science, University of Pisa, Largo Pontecorvo, 3, 56127 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| |
Collapse
|
2
|
Iqbal S, Sebhaoui J, Ashraf S, Ozcan M, Kim W, Belmen B, Yeşilyurt G, Hanashalshahaby E, Zhang C, Uhlen M, Boren J, Turkez H, Mardinoglu A. Design and synthesis of novel JNK inhibitors targeting liver pyruvate kinase for the treatment of non-alcoholic fatty liver disease and hepatocellular carcinoma. Bioorg Chem 2024; 147:107425. [PMID: 38714117 DOI: 10.1016/j.bioorg.2024.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a broad range of liver disease including hepatocellular carcinoma (HCC) with is no FDA-approved drug. Liver pyruvate kinase (PKL) is a major regulator of metabolic flux and ATP generation in liver presenting a potential target for the treatment of NAFLD. Based on our recent finding of JNK-5A's effectiveness in inhibiting PKLR expression through a drug repositioning pipeline, this study aims to improve its efficacy further. We synthesized a series of JNK-5A analogues with targeted modifications, guided by molecular docking studies. These compounds were evaluated for their activities on PKL expression, cell viability, triacylglyceride (TAG) levels, and the expressions of steatosis-related proteins in the human HepG2 cell line. Subsequently, the efficacy of these compounds was assessed in reducing TAG level and toxicity. Compounds 40 (SET-151) and 41 (SET-152) proved to be the most efficient in reducing TAG levels (11.51 ± 0.90 % and 10.77 ± 0.67 %) and demonstrated lower toxicity (61.60 ± 5.00 % and 43.87 ± 1.42 %) in HepG2 cells. Additionally, all synthesized compounds were evaluated for their anti-cancer properties revealing that compound 74 (SET-171) exhibited the highest toxicity in cell viability with IC50 values of 8.82 µM and 2.97 µM in HepG2 and Huh7 cell lines, respectively. To summarize, compounds 40 (SET-151) and 41 (SET-152) show potential for treating NAFLD, while compound 74 (SET-171) holds potential for HCC therapy.
Collapse
Affiliation(s)
- Shazia Iqbal
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye
| | - Jihad Sebhaoui
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye; Life and Health Sciences Laboratory, Faculty of Medicine and Pharmacy of Tangier, Abdelmalek Essaadi University, Morocco
| | - Sajda Ashraf
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye
| | - Mehmet Ozcan
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkiye
| | - Woonghee Kim
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Burcu Belmen
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye
| | - Güldeniz Yeşilyurt
- Trustlife Labs Drug Research & Development Center, 34774 Istanbul, Turkiye
| | | | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkiye
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK.
| |
Collapse
|