1
|
Roth SK, Uth C, Orizar I, Rico A, Hedberg P, Norkko A, Lewandowska A. Synergistic effects of the antibiotic ciprofloxacin and a simulated heatwave on the Baltic Sea dinoflagellate Apocalathium malmogiense. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107155. [PMID: 40258321 DOI: 10.1016/j.marenvres.2025.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/26/2025] [Accepted: 04/13/2025] [Indexed: 04/23/2025]
Abstract
Climate change-driven heatwaves in the Baltic Sea are becoming more frequent and intense, potentially exacerbating phytoplankton blooms that impact biodiversity and ecosystem functioning. Alongside this, chemical pollutants, such as antibiotics, may compound these effects. This study examined the combined impacts of a simulated heatwave (+5 °C) and the antibiotic ciprofloxacin (0.1 μg L-1) on the dinoflagellate Apocalathium malmogiense. We assessed cell counts, size, growth rates, Chlorophyll-a (Chl-a) content, and nutrient uptake. The simulated heatwave increased growth and Chl-a content but reduced cell size, while ciprofloxacin alone had no effect on growth response parameters. However, the combination of both stressors significantly reduced cell counts (-17 %), Chl-a content (-34 %), and growth rates (-20 %). Ciprofloxacin also decreased nitrogen uptake by over 40 %, exacerbating the nitrogen deficit caused by the heatwave. This study highlights the importance of testing global change stressors in combination, as synergistic effects may otherwise go undetected if only studied in isolation.
Collapse
Affiliation(s)
- Sabrina K Roth
- Tvärminne Zoological Station, University of Helsinki, Finland.
| | - Catharina Uth
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Iris Orizar
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Spain
| | - Per Hedberg
- Tvärminne Zoological Station, University of Helsinki, Finland
| | - Alf Norkko
- Tvärminne Zoological Station, University of Helsinki, Finland
| | | |
Collapse
|
2
|
Osman EO, Garcias-Bonet N, Cardoso PM, Rosado PM, García FC, Ferrier-Pagès C, Peixoto RS. Phototrophic bacteria as potential probiotics for corals. NPJ BIODIVERSITY 2025; 4:16. [PMID: 40301674 PMCID: PMC12041382 DOI: 10.1038/s44185-025-00085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/14/2025] [Indexed: 05/01/2025]
Abstract
Coral-associated microorganisms provide crucial nutritional, protective, and developmental benefits, yet many functional traits remain unexplored. Phototrophic bacteria may enhance coral nutrition and reduce oxidative stress during bleaching via photosynthesis and antioxidant production. Despite this potential, their role in the holobiont's energy budget and heat stress resilience is understudied. This review explores the functional traits and potential of phototrophic bacteria to enhance coral health and resilience under environmental stress.
Collapse
Affiliation(s)
- Eslam O Osman
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Neus Garcias-Bonet
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Pedro M Cardoso
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francisca C García
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Raquel S Peixoto
- Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
3
|
Voolstra CR, Raina JB, Dörr M, Cárdenas A, Pogoreutz C, Silveira CB, Mohamed AR, Bourne DG, Luo H, Amin SA, Peixoto RS. The coral microbiome in sickness, in health and in a changing world. Nat Rev Microbiol 2024; 22:460-475. [PMID: 38438489 DOI: 10.1038/s41579-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.
Collapse
Affiliation(s)
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Melanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | - Claudia Pogoreutz
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | | | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haiwei Luo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC) and Computational Biology Research Center (CBRC), Biological, Environmental Sciences, and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|