1
|
Luo D, Alsuwaykit Z, Khan D, Strnad O, Isenberg T, Viola I. DiffFit: Visually-Guided Differentiable Fitting of Molecule Structures to a Cryo-EM Map. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:558-568. [PMID: 39255135 DOI: 10.1109/tvcg.2024.3456404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
We introduce DiffFit, a differentiable algorithm for fitting protein atomistic structures into an experimental reconstructed Cryo-Electron Microscopy (cryo-EM) volume map. In structural biology, this process is necessary to semi-automatically composite large mesoscale models of complex protein assemblies and complete cellular structures that are based on measured cryo-EM data. The current approaches require manual fitting in three dimensions to start, resulting in approximately aligned structures followed by an automated fine-tuning of the alignment. The DiffFit approach enables domain scientists to fit new structures automatically and visualize the results for inspection and interactive revision. The fitting begins with differentiable three-dimensional (3D) rigid transformations of the protein atom coordinates followed by sampling the density values at the atom coordinates from the target cryo-EM volume. To ensure a meaningful correlation between the sampled densities and the protein structure, we proposed a novel loss function based on a multi-resolution volume-array approach and the exploitation of the negative space. This loss function serves as a critical metric for assessing the fitting quality, ensuring the fitting accuracy and an improved visualization of the results. We assessed the placement quality of DiffFit with several large, realistic datasets and found it to be superior to that of previous methods. We further evaluated our method in two use cases: automating the integration of known composite structures into larger protein complexes and facilitating the fitting of predicted protein domains into volume densities to aid researchers in identifying unknown proteins. We implemented our algorithm as an open-source plugin (github.com/nanovis/DiffFit) in ChimeraX, a leading visualization software in the field. All supplemental materials are available at osf. io/5tx4q.
Collapse
|
2
|
Li C, Smirnova E, Schnitzler C, Crucifix C, Concordet JP, Brion A, Poterszman A, Schultz P, Papai G, Ben-Shem A. Structure of the human TIP60-C histone exchange and acetyltransferase complex. Nature 2024; 635:764-769. [PMID: 39260417 PMCID: PMC11578891 DOI: 10.1038/s41586-024-08011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Chromatin structure is a key regulator of DNA transcription, replication and repair1. In humans, the TIP60-EP400 complex (TIP60-C) is a 20-subunit assembly that affects chromatin structure through two enzymatic activities: ATP-dependent exchange of histone H2A-H2B for H2A.Z-H2B, and histone acetylation. In yeast, however, these activities are performed by two independent complexes-SWR1 and NuA4, respectively2,3. How the activities of the two complexes are merged into one supercomplex in humans, and what this association entails for the structure and mechanism of the proteins and their recruitment to chromatin, are unknown. Here we describe the structure of the endogenous human TIP60-C. We find a three-lobed architecture composed of SWR1-like (SWR1L) and NuA4-like (NuA4L) parts, which associate with a TRRAP activator-binding module. The huge EP400 subunit contains the ATPase motor, traverses the junction between SWR1L and NuA4L twice and constitutes the scaffold of the three-lobed architecture. NuA4L is completely rearranged compared with its yeast counterpart. TRRAP is flexibly tethered to NuA4L-in stark contrast to its robust connection to the completely opposite side of NuA4 in yeast4-7. A modelled nucleosome bound to SWR1L, supported by tests of TIP60-C activity, suggests that some aspects of the histone exchange mechanism diverge from what is seen in yeast8,9. Furthermore, a fixed actin module (as opposed to the mobile actin subcomplex in SWR1; ref. 8), the flexibility of TRRAP and the weak effect of extranucleosomal DNA on exchange activity lead to a different, activator-based mode of enlisting TIP60-C to chromatin.
Collapse
Affiliation(s)
- Changqing Li
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Ekaterina Smirnova
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Charlotte Schnitzler
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Corinne Crucifix
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Jean Paul Concordet
- Museum National d'Histoire Naturelle, U 1154 Inserm UMR 7196 CNRS, Paris, France
| | - Alice Brion
- Museum National d'Histoire Naturelle, U 1154 Inserm UMR 7196 CNRS, Paris, France
| | - Arnaud Poterszman
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Patrick Schultz
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Gabor Papai
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Adam Ben-Shem
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France.
- CNRS, UMR 7104, Illkirch, France.
- Inserm, UMR S 1258, Illkirch, France.
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
| |
Collapse
|
3
|
Titarenko V, Roseman AM. Optimal 3D angular sampling with applications to cryo-EM problems. J Struct Biol 2024; 216:108083. [PMID: 38490514 DOI: 10.1016/j.jsb.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
The goal of cryo-EM experiments in the biological sciences is to determine the atomic structure of a molecule and deduce insights into its functions and mechanisms. Despite improvements in instrumentation for data collection and new software algorithms, in most cases, individual atoms are not resolved. Model building of proteins, nucleic acids, or molecules in general, is feasible from the experimentally determined density maps at resolutions up to the range of 3-4 Angstroms. For lower-resolution maps or parts of maps, fitting smaller structures obtained by modelling or experimental techniques with higher resolution is a way to resolve the issue. In practice, we have an atomic structure, generate its density map at a given resolution, and translate/rotate the map within a region of interest in the experimental map, computing a measure-of-fit score with the corresponding areas of the experimental map. This procedure is computationally intensive since we work in 6D space. An optimal ordered list of rotations will reduce the angular error and help to find the best-fitting positions faster for a coarse global search or a local refinement. It can be used for adaptive approaches to stop fitting algorithms earlier once the desired accuracy has been achieved. We demonstrate how the performance of some fitting algorithms can be improved by grouping sets of rotations. We present an approach to generate more efficient 3D angular sampling, and provide the computer code to generate lists of optimal orientations for single and grouped rotations and the lists themselves.
Collapse
Affiliation(s)
- Valeriy Titarenko
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, The Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alan M Roseman
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, The Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
4
|
He B, Zhang F, Feng C, Yang J, Gao X, Han R. Accurate global and local 3D alignment of cryo-EM density maps using local spatial structural features. Nat Commun 2024; 15:1593. [PMID: 38383438 PMCID: PMC10881975 DOI: 10.1038/s41467-024-45861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Advances in cryo-electron microscopy (cryo-EM) imaging technologies have led to a rapidly increasing number of cryo-EM density maps. Alignment and comparison of density maps play a crucial role in interpreting structural information, such as conformational heterogeneity analysis using global alignment and atomic model assembly through local alignment. Here, we present a fast and accurate global and local cryo-EM density map alignment method called CryoAlign, that leverages local density feature descriptors to capture spatial structure similarities. CryoAlign is a feature-based cryo-EM map alignment tool, in which the employment of feature-based architecture enables the rapid establishment of point pair correspondences and robust estimation of alignment parameters. Extensive experimental evaluations demonstrate the superiority of CryoAlign over the existing methods in terms of both alignment accuracy and speed.
Collapse
Affiliation(s)
- Bintao He
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenjie Feng
- College of Medical Information and Engineering, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianyi Yang
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, 23955, Saudi Arabia.
| | - Renmin Han
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Park J, Joung I, Joo K, Lee J. Application of conformational space annealing to the protein structure modeling using cryo-EM maps. J Comput Chem 2023; 44:2332-2346. [PMID: 37585026 DOI: 10.1002/jcc.27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/26/2023] [Accepted: 07/16/2023] [Indexed: 08/17/2023]
Abstract
Conformational space annealing (CSA), a global optimization method, has been applied to various protein structure modeling tasks. In this paper, we applied CSA to the cryo-EM structure modeling task by combining the python subroutine of CSA (PyCSA) and the fast relax (FastRelax) protocol of PyRosetta. Refinement of initial structures generated from two methods, rigid fitting of predicted structures to the Cryo-EM map and de novo protein modeling by tracing the Cryo-EM map, was performed by CSA. In the refinement of the rigid-fitted structures, the final models showed that CSA can generate reliable atomic structures of proteins, even when large movements of protein domains were required. In the de novo modeling case, although the overall structural qualities of the final models were rather dependent on the initial models, the final models generated by CSA showed improved MolProbity scores and cross-correlation coefficients to the maps. These results suggest that CSA can accomplish flexible fitting and refinement together by sampling diverse conformations effectively and thus can be utilized for cryo-EM structure modeling.
Collapse
Affiliation(s)
| | | | - Keehyoung Joo
- Center for Advanced Computations, Korea Institute for Advanced Study, Seoul, South Korea
| | - Jooyoung Lee
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| |
Collapse
|
6
|
Seif-El-Dahan M, Kefala-Stavridi A, Frit P, Hardwick SW, Chirgadze DY, Maia De Oliviera T, Britton S, Barboule N, Bossaert M, Pandurangan AP, Meek K, Blundell TL, Ropars V, Calsou P, Charbonnier JB, Chaplin AK. PAXX binding to the NHEJ machinery explains functional redundancy with XLF. SCIENCE ADVANCES 2023; 9:eadg2834. [PMID: 37256950 PMCID: PMC10413649 DOI: 10.1126/sciadv.adg2834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 06/02/2023]
Abstract
Nonhomologous end joining is a critical mechanism that repairs DNA double-strand breaks in human cells. In this work, we address the structural and functional role of the accessory protein PAXX [paralog of x-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor (XLF)] in this mechanism. Here, we report high-resolution cryo-electron microscopy (cryo-EM) and x-ray crystallography structures of the PAXX C-terminal Ku-binding motif bound to Ku70/80 and cryo-EM structures of PAXX bound to two alternate DNA-dependent protein kinase (DNA-PK) end-bridging dimers, mediated by either Ku80 or XLF. We identify residues critical for the Ku70/PAXX interaction in vitro and in cells. We demonstrate that PAXX and XLF can bind simultaneously to the Ku heterodimer and act as structural bridges in alternate forms of DNA-PK dimers. Last, we show that engagement of both proteins provides a complementary advantage for DNA end synapsis and end joining in cells.
Collapse
Affiliation(s)
- Murielle Seif-El-Dahan
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Antonia Kefala-Stavridi
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Philippe Frit
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Steven W. Hardwick
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dima Y. Chirgadze
- Cryo-EM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | - Sébastien Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nadia Barboule
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Madeleine Bossaert
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Arun Prasad Pandurangan
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Patrick Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Institute Joliot, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Amanda K. Chaplin
- Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
7
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
8
|
Alnabati E, Esquivel-Rodriguez J, Terashi G, Kihara D. MarkovFit: Structure Fitting for Protein Complexes in Electron Microscopy Maps Using Markov Random Field. Front Mol Biosci 2022; 9:935411. [PMID: 35959463 PMCID: PMC9358042 DOI: 10.3389/fmolb.2022.935411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
An increasing number of protein complex structures are determined by cryo-electron microscopy (cryo-EM). When individual protein structures have been determined and are available, an important task in structure modeling is to fit the individual structures into the density map. Here, we designed a method that fits the atomic structures of proteins in cryo-EM maps of medium to low resolutions using Markov random fields, which allows probabilistic evaluation of fitted models. The accuracy of our method, MarkovFit, performed better than existing methods on datasets of 31 simulated cryo-EM maps of resolution 10 Å , nine experimentally determined cryo-EM maps of resolution less than 4 Å , and 28 experimentally determined cryo-EM maps of resolution 6 to 20 Å .
Collapse
Affiliation(s)
- Eman Alnabati
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | | | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Zhu Z, Deng Z, Wang Q, Wang Y, Zhang D, Xu R, Guo L, Wen H. Simulation and Machine Learning Methods for Ion-Channel Structure Determination, Mechanistic Studies and Drug Design. Front Pharmacol 2022; 13:939555. [PMID: 35837274 PMCID: PMC9275593 DOI: 10.3389/fphar.2022.939555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Ion channels are expressed in almost all living cells, controlling the in-and-out communications, making them ideal drug targets, especially for central nervous system diseases. However, owing to their dynamic nature and the presence of a membrane environment, ion channels remain difficult targets for the past decades. Recent advancement in cryo-electron microscopy and computational methods has shed light on this issue. An explosion in high-resolution ion channel structures paved way for structure-based rational drug design and the state-of-the-art simulation and machine learning techniques dramatically improved the efficiency and effectiveness of computer-aided drug design. Here we present an overview of how simulation and machine learning-based methods fundamentally changed the ion channel-related drug design at different levels, as well as the emerging trends in the field.
Collapse
Affiliation(s)
- Zhengdan Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Institute of Big Data Research, Beijing, China
| | - Zhenfeng Deng
- DP Technology, Beijing, China
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | - Duo Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- DP Technology, Beijing, China
| | - Ruihan Xu
- DP Technology, Beijing, China
- National Engineering Research Center of Visual Technology, Peking University, Beijing, China
| | | | - Han Wen
- DP Technology, Beijing, China
| |
Collapse
|
10
|
Leipart V, Montserrat-Canals M, Cunha ES, Luecke H, Herrero-Galán E, Halskau Ø, Amdam GV. Structure prediction of honey bee vitellogenin: a multi-domain protein important for insect immunity. FEBS Open Bio 2021; 12:51-70. [PMID: 34665931 PMCID: PMC8727950 DOI: 10.1002/2211-5463.13316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Vitellogenin (Vg) has been implicated as a central protein in the immunity of egg‐laying animals. Studies on a diverse set of species suggest that Vg supports health and longevity through binding to pathogens. Specific studies of honey bees (Apis mellifera) further indicate that the vitellogenin (vg) gene undergoes selection driven by local pathogen pressures. Determining the complete 3D structure of full‐length Vg (flVg) protein will provide insights regarding the structure–function relationships underlying allelic variation. Honey bee Vg has been described in terms of function, and two subdomains have been structurally described, while information about the other domains is lacking. Here, we present a structure prediction, restrained by experimental data, of flVg from honey bees. To achieve this, we performed homology modeling and used AlphaFold before using a negative‐stain electron microscopy map to restrict, orient, and validate our 3D model. Our approach identified a highly conserved Ca2+‐ion‐binding site in a von Willebrand factor domain that might be central to Vg function. Thereafter, we used rigid‐body fitting to predict the relative position of high‐resolution domains in a flVg model. This mapping represents the first experimentally validated full‐length protein model of a Vg protein and is thus relevant for understanding Vg in numerous species. Our results are also specifically relevant to honey bee health, which is a topic of global concern due to rapidly declining pollinator numbers.
Collapse
Affiliation(s)
- Vilde Leipart
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | | | - Eva S Cunha
- Norwegian Center for Molecular Medicine, University of Oslo, Norway
| | - Hartmut Luecke
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Elías Herrero-Galán
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Norway
| | - Gro V Amdam
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
11
|
Han X, Terashi G, Christoffer C, Chen S, Kihara D. VESPER: global and local cryo-EM map alignment using local density vectors. Nat Commun 2021; 12:2090. [PMID: 33828103 PMCID: PMC8027200 DOI: 10.1038/s41467-021-22401-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
An increasing number of density maps of biological macromolecules have been determined by cryo-electron microscopy (cryo-EM) and stored in the public database, EMDB. To interpret the structural information contained in EM density maps, alignment of maps is an essential step for structure modeling, comparison of maps, and for database search. Here, we developed VESPER, which captures the similarity of underlying molecular structures embedded in density maps by taking local gradient directions into consideration. Compared to existing methods, VESPER achieved substantially more accurate global and local alignment of maps as well as database retrieval.
Collapse
Affiliation(s)
- Xusi Han
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Siyang Chen
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
12
|
Zhang B, Zhang W, Pearce R, Zhang Y, Shen HB. Fitting Low-Resolution Protein Structures into Cryo-EM Density Maps by Multiobjective Optimization of Global and Local Correlations. J Phys Chem B 2021; 125:528-538. [PMID: 33397114 DOI: 10.1021/acs.jpcb.0c09903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rigid-body fitting of predicted structural models into cryo-electron microscopy (cryo-EM) density maps is a necessary procedure for density map-guided protein structure determination and prediction. We proposed a novel multiobjective optimization protocol, MOFIT, which performs a rigid-body density-map fitting based on particle swarm optimization (PSO). MOFIT was tested on a large set of 292 nonhomologous single-domain proteins. Starting from structural models predicted by I-TASSER, MOFIT achieved an average coordinate root-mean-square deviation of 2.46 Å, which was 1.57, 2.79, and 3.95 Å lower than three leading single-objective function-based methods, where the differences were statistically significant with p-values of 1.65 × 10-6, 6.36 × 10-8, and 6.44 × 10-11 calculated using two-tail Student's t tests. Detailed analyses showed that the major advantages of MOFIT lie in the multiobjective protocol and the extensive PSO search simulations guided by the composite objective functions, which integrates complementary correlation coefficients from the global structure, local fragments, and individual residues with the cryo-EM density maps.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenyi Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| |
Collapse
|
13
|
Seffernick JT, Lindert S. Hybrid methods for combined experimental and computational determination of protein structure. J Chem Phys 2020; 153:240901. [PMID: 33380110 PMCID: PMC7773420 DOI: 10.1063/5.0026025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural information, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data, which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimentally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded significant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental data, specifically for protein folding, protein-protein docking, and molecular dynamics simulations. We describe methods that incorporate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future directions.
Collapse
Affiliation(s)
- Justin T. Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
14
|
Nazarov S, Bezler A, Hatzopoulos GN, Nemčíková Villímová V, Demurtas D, Le Guennec M, Guichard P, Gönczy P. Novel features of centriole polarity and cartwheel stacking revealed by cryo-tomography. EMBO J 2020; 39:e106249. [PMID: 32954505 PMCID: PMC7667878 DOI: 10.15252/embj.2020106249] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
Centrioles are polarized microtubule‐based organelles that seed the formation of cilia, and which assemble from a cartwheel containing stacked ring oligomers of SAS‐6 proteins. A cryo‐tomography map of centrioles from the termite flagellate Trichonympha spp. was obtained previously, but higher resolution analysis is likely to reveal novel features. Using sub‐tomogram averaging (STA) in T. spp. and Trichonympha agilis, we delineate the architecture of centriolar microtubules, pinhead, and A‐C linker. Moreover, we report ~25 Å resolution maps of the central cartwheel, revealing notably polarized cartwheel inner densities (CID). Furthermore, STA of centrioles from the distant flagellate Teranympha mirabilis uncovers similar cartwheel architecture and a distinct filamentous CID. Fitting the CrSAS‐6 crystal structure into the flagellate maps and analyzing cartwheels generated in vitro indicate that SAS‐6 rings can directly stack onto one another in two alternating configurations: with a slight rotational offset and in register. Overall, improved STA maps in three flagellates enabled us to unravel novel architectural features, including of centriole polarity and cartwheel stacking, thus setting the stage for an accelerated elucidation of underlying assembly mechanisms.
Collapse
Affiliation(s)
- Sergey Nazarov
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Interdisciplinary Centre for Electron Microscopy (CIME), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandra Bezler
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Veronika Nemčíková Villímová
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Davide Demurtas
- Interdisciplinary Centre for Electron Microscopy (CIME), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Maeva Le Guennec
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Paul Guichard
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Zhang B, Zhang X, Pearce R, Shen HB, Zhang Y. A New Protocol for Atomic-Level Protein Structure Modeling and Refinement Using Low-to-Medium Resolution Cryo-EM Density Maps. J Mol Biol 2020; 432:5365-5377. [PMID: 32771523 DOI: 10.1016/j.jmb.2020.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
The rapid progress of cryo-electron microscopy (cryo-EM) in structural biology has raised an urgent need for robust methods to create and refine atomic-level structural models using low-resolution EM density maps. We propose a new protocol to create initial models using I-TASSER protein structure prediction, followed by EM density map-based rigid-body structure fitting, flexible fragment adjustment and atomic-level structure refinement simulations. The protocol was tested on a large set of 285 non-homologous proteins and generated structural models with correct folds for 260 proteins, where 28% had RMSDs below 2 Å. Compared to other state-of-the-art methods, the major advantage of the proposed pipeline lies in the uniform structure prediction and refinement protocol, as well as the extensive structural re-assembly simulations, which allow for low-to-medium resolution EM density map-guided structure modeling starting from amino acid sequences. Interestingly, the quality of both the image fitting and subsequent structure refinement was found to be strongly correlated with the correctness of the initial I-TASSER models; this is mainly due to the different correlation patterns observed between force field and structural quality for the models with template modeling score (or TM-score, a metric quantifying the similarity of models to the native) above and below a threshold of 0.5. Overall, the results demonstrate a new avenue that is ready to use for large-scale cryo-EM-based structure modeling and atomic-level density map-guided structure refinement.
Collapse
Affiliation(s)
- Biao Zhang
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xi Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Real time structural search of the Protein Data Bank. PLoS Comput Biol 2020; 16:e1007970. [PMID: 32639954 PMCID: PMC7371193 DOI: 10.1371/journal.pcbi.1007970] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/20/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022] Open
Abstract
Detection of protein structure similarity is a central challenge in structural bioinformatics. Comparisons are usually performed at the polypeptide chain level, however the functional form of a protein within the cell is often an oligomer. This fact, together with recent growth of oligomeric structures in the Protein Data Bank (PDB), demands more efficient approaches to oligomeric assembly alignment/retrieval. Traditional methods use atom level information, which can be complicated by the presence of topological permutations within a polypeptide chain and/or subunit rearrangements. These challenges can be overcome by comparing electron density volumes directly. But, brute force alignment of 3D data is a compute intensive search problem. We developed a 3D Zernike moment normalization procedure to orient electron density volumes and assess similarity with unprecedented speed. Similarity searching with this approach enables real-time retrieval of proteins/protein assemblies resembling a target, from PDB or user input, together with resulting alignments (http://shape.rcsb.org).
Collapse
|
17
|
Alnabati E, Kihara D. Advances in Structure Modeling Methods for Cryo-Electron Microscopy Maps. Molecules 2019; 25:molecules25010082. [PMID: 31878333 PMCID: PMC6982917 DOI: 10.3390/molecules25010082] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/16/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) has now become a widely used technique for structure determination of macromolecular complexes. For modeling molecular structures from density maps of different resolutions, many algorithms have been developed. These algorithms can be categorized into rigid fitting, flexible fitting, and de novo modeling methods. It is also observed that machine learning (ML) techniques have been increasingly applied following the rapid progress of the ML field. Here, we review these different categories of macromolecule structure modeling methods and discuss their advances over time.
Collapse
Affiliation(s)
- Eman Alnabati
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
18
|
Structural Organization and Dynamics of Homodimeric Cytohesin Family Arf GTPase Exchange Factors in Solution and on Membranes. Structure 2019; 27:1782-1797.e7. [PMID: 31601460 PMCID: PMC6948192 DOI: 10.1016/j.str.2019.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Membrane dynamic processes require Arf GTPase activation by guanine nucleotide exchange factors (GEFs) with a Sec7 domain. Cytohesin family Arf GEFs function in signaling and cell migration through Arf GTPase activation on the plasma membrane and endosomes. In this study, the structural organization of two cytohesins (Grp1 and ARNO) was investigated in solution by size exclusion-small angle X-ray scattering and negative stain-electron microscopy and on membranes by dynamic light scattering, hydrogen-deuterium exchange-mass spectrometry and guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange assays. The results suggest that cytohesins form elongated dimers with a central coiled coil and membrane-binding pleckstrin-homology (PH) domains at opposite ends. The dimers display significant conformational heterogeneity, with a preference for compact to intermediate conformations. Phosphoinositide-dependent membrane recruitment is mediated by one PH domain at a time and alters the conformational dynamics to prime allosteric activation by Arf-GTP. A structural model for membrane targeting and allosteric activation of full-length cytohesin dimers is discussed.
Collapse
|
19
|
Malhotra S, Träger S, Dal Peraro M, Topf M. Modelling structures in cryo-EM maps. Curr Opin Struct Biol 2019; 58:105-114. [PMID: 31394387 DOI: 10.1016/j.sbi.2019.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022]
Abstract
Recent advances in structure determination of sub-cellular structures using cryo-electron microscopy and tomography have enabled us to understand their architecture in a more detailed manner and gain insight into their function. The choice of approach to use for atomic model building, fitting, refinement and validation in the 3D map resulting from these experiments depends primarily on the resolution of the map and the prior information on the corresponding model. Here, we survey some of such methods and approaches and highlight their uses in specific recent examples.
Collapse
Affiliation(s)
- Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Sylvain Träger
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
20
|
Chen L, Baker B, Santos E, Sheep M, Daftarian D. A Visualization Tool for Cryo-EM Protein Validation with an Unsupervised Machine Learning Model in Chimera Platform. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E86. [PMID: 31390767 PMCID: PMC6789601 DOI: 10.3390/medicines6030086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Background: Cryo-electron microscopy (cryo-EM) has become a major technique for protein structure determination. However, due to the low quality of cryo-EM density maps, many protein structures derived from cryo-EM contain outliers introduced during the modeling process. The current protein model validation system lacks identification features for cryo-EM proteins making it not enough to identify outliers in cryo-EM proteins. Methods: This study introduces an efficient unsupervised outlier detection model for validating protein models built from cryo-EM technique. The current model uses a high-resolution X-ray dataset (<1.5 Å) as the reference dataset. The distal block distance, side-chain length, phi, psi, and first chi angle of the residues in the reference dataset are collected and saved as a database of the histogram-based outlier score (HBOS). The HBOS value of the residues in target cryo-EM proteins can be read from this HBOS database. Results: Protein residues with a HBOS value greater than ten are labeled as outliers by default. Four datasets containing proteins derived from cryo-EM density maps were tested with this probabilistic anomaly detection model. Conclusions: According to the proposed model, a visualization assistant tool was designed for Chimera, a protein visualization platform.
Collapse
Affiliation(s)
- Lin Chen
- Department of Computer Science, Valdosta State University, Valdosta, GA 31693, USA.
| | - Brandon Baker
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Eduardo Santos
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Michell Sheep
- Department of Mathematics & Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Darius Daftarian
- Department of Mathematics & Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA
| |
Collapse
|
21
|
Voigt C, Dobrychlop M, Kruse E, Czerwoniec A, Kasprzak JM, Bytner P, Campo CD, Leeder WM, Bujnicki JM, Göringer HU. The OB-fold proteins of the Trypanosoma brucei editosome execute RNA-chaperone activity. Nucleic Acids Res 2019; 46:10353-10367. [PMID: 30060205 PMCID: PMC6212840 DOI: 10.1093/nar/gky668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/13/2018] [Indexed: 02/01/2023] Open
Abstract
Sequence-deficient mitochondrial pre-mRNAs in African trypanosomes are substrates of a U-nucleotide-specific RNA editing reaction to generate translation-competent mRNAs. The reaction is catalyzed by a macromolecular protein complex termed the editosome. Editosomes execute RNA-chaperone activity to overcome the highly folded nature of pre-edited substrate mRNAs. The molecular basis for this activity is unknown. Here we test five of the OB-fold proteins of the Trypanosoma brucei editosome as candidates. We demonstrate that all proteins execute RNA-chaperone activity albeit to different degrees. We further show that the activities correlate to the surface areas of the proteins and we map the protein-induced RNA-structure changes using SHAPE-chemical probing. To provide a structural context for our findings we calculate a coarse-grained model of the editosome. The model has a shell-like structure: Structurally well-defined protein domains are separated from an outer shell of intrinsically disordered protein domains, which suggests a surface-driven mechanism for the chaperone activity.
Collapse
Affiliation(s)
- Christin Voigt
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Mateusz Dobrychlop
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Elisabeth Kruse
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Anna Czerwoniec
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Joanna M Kasprzak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Patrycja Bytner
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Cristian Del Campo
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - W-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Janusz M Bujnicki
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - H Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
22
|
Harada R, Shigeta Y. How low-resolution structural data predict the conformational changes of a protein: a study on data-driven molecular dynamics simulations. Phys Chem Chem Phys 2019; 20:17790-17798. [PMID: 29922770 DOI: 10.1039/c8cp02246a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parallel cascade selection molecular dynamics (PaCS-MD) is a conformational sampling method for generating transition pathways between a given reactant and a product. PaCS-MD repeats the following two steps: (1) selections of initial structures relevant to transitions and (2) their conformational resampling. When selecting the initial structures, several measures are utilized to identify their potential to undergo transitions. In the present study, low-resolution structural data obtained from small angle scattering (SAXS) and cryo-electron microscopy (EM) are adopted as the measures in PaCS-MD to promote the conformational transitions of proteins, which is defined as SAXS-/EM-driven targeted PaCS-MD. By selecting the essential structures that have high correlations with the low-resolution structural data, the SAXS-/EM-driven targeted PaCS-MD identifies a set of transition pathways between the reactant and the product. As a demonstration, the present method successfully predicted the open-closed transition pathway of the lysine-, arginine-, ornithine-binding protein with a ns-order simulation time, indicating that the data-driven PaCS-MD simulation might work to promote the conformational transitions of proteins efficiently.
Collapse
Affiliation(s)
- Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan.
| | | |
Collapse
|
23
|
Braitbard M, Schneidman-Duhovny D, Kalisman N. Integrative Structure Modeling: Overview and Assessment. Annu Rev Biochem 2019; 88:113-135. [PMID: 30830798 DOI: 10.1146/annurev-biochem-013118-111429] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integrative structure modeling computationally combines data from multiple sources of information with the aim of obtaining structural insights that are not revealed by any single approach alone. In the first part of this review, we survey the commonly used sources of structural information and the computational aspects of model building. Throughout the past decade, integrative modeling was applied to various biological systems, with a focus on large protein complexes. Recent progress in the field of cryo-electron microscopy (cryo-EM) has resolved many of these complexes to near-atomic resolution. In the second part of this review, we compare a range of published integrative models with their higher-resolution counterparts with the aim of critically assessing their accuracy. This comparison gives a favorable view of integrative modeling and demonstrates its ability to yield accurate and informative results. We discuss possible roles of integrative modeling in the new era of cryo-EM and highlight future challenges and directions.
Collapse
Affiliation(s)
- Merav Braitbard
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Dina Schneidman-Duhovny
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; .,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Nir Kalisman
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| |
Collapse
|
24
|
Kolesnikova O, Ben-Shem A, Luo J, Ranish J, Schultz P, Papai G. Molecular structure of promoter-bound yeast TFIID. Nat Commun 2018; 9:4666. [PMID: 30405110 PMCID: PMC6220335 DOI: 10.1038/s41467-018-07096-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP-associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolution better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe. Transcription preinitiation complex assembly begins with the recognition of the gene promoter by the TATA-box Binding Protein-containing TFIID complex. Here the authors present a Cryo-EM structure of promoter-bound yeast TFIID complex, providing a detailed view of its subunit organization and promoter DNA contacts.
Collapse
Affiliation(s)
- Olga Kolesnikova
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,Université de Strasbourg, Illkirch, 67404, France
| | - Adam Ben-Shem
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,Université de Strasbourg, Illkirch, 67404, France
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Patrick Schultz
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France. .,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. .,Université de Strasbourg, Illkirch, 67404, France.
| | - Gabor Papai
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France. .,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. .,Université de Strasbourg, Illkirch, 67404, France.
| |
Collapse
|
25
|
Terashi G, Kihara D. De novo main-chain modeling for EM maps using MAINMAST. Nat Commun 2018; 9:1618. [PMID: 29691408 PMCID: PMC5915429 DOI: 10.1038/s41467-018-04053-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/29/2018] [Indexed: 11/09/2022] Open
Abstract
An increasing number of protein structures are determined by cryo-electron microscopy (cryo-EM) at near atomic resolution. However, tracing the main-chains and building full-atom models from EM maps of ~4-5 Å is still not trivial and remains a time-consuming task. Here, we introduce a fully automated de novo structure modeling method, MAINMAST, which builds three-dimensional models of a protein from a near-atomic resolution EM map. The method directly traces the protein's main-chain and identifies Cα positions as tree-graph structures in the EM map. MAINMAST performs significantly better than existing software in building global protein structure models on data sets of 40 simulated density maps at 5 Å resolution and 30 experimentally determined maps at 2.6-4.8 Å resolution. In another benchmark of building missing fragments in protein models for EM maps, MAINMAST builds fragments of 11-161 residues long with an average RMSD of 2.68 Å.
Collapse
Affiliation(s)
- Genki Terashi
- Department of Biological Sciences, Purdue University, 249S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, 249S. Martin Jischke Dr., West Lafayette, IN, 47907, USA. .,Department of Computer Science, Purdue University, 305N. University St., West Lafayette, IN, 47907, USA.
| |
Collapse
|
26
|
Tenthorey JL, Haloupek N, López-Blanco JR, Grob P, Adamson E, Hartenian E, Lind NA, Bourgeois NM, Chacón P, Nogales E, Vance RE. The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. Science 2018; 358:888-893. [PMID: 29146805 PMCID: PMC5842810 DOI: 10.1126/science.aao1140] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022]
Abstract
Robust innate immune detection of rapidly evolving pathogens is critical for host defense. Nucleotide-binding domain leucine-rich repeat (NLR) proteins function as cytosolic innate immune sensors in plants and animals. However, the structural basis for ligand-induced NLR activation has so far remained unknown. NAIP5 (NLR family, apoptosis inhibitory protein 5) binds the bacterial protein flagellin and assembles with NLRC4 to form a multiprotein complex called an inflammasome. Here we report the cryo-electron microscopy structure of the assembled ~1.4-megadalton flagellin-NAIP5-NLRC4 inflammasome, revealing how a ligand activates an NLR. Six distinct NAIP5 domains contact multiple conserved regions of flagellin, prying NAIP5 into an open and active conformation. We show that innate immune recognition of multiple ligand surfaces is a generalizable strategy that limits pathogen evolution and immune escape.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicole Haloupek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - José Ramón López-Blanco
- Departamento de Química Física Biológica, Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Patricia Grob
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Elise Adamson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicholas A Lind
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Natasha M Bourgeois
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Pablo Chacón
- Departamento de Química Física Biológica, Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.,Cancer Research Laboratory and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Malaby AW, Das S, Chakravarthy S, Irving TC, Bilsel O, Lambright DG. Structural Dynamics Control Allosteric Activation of Cytohesin Family Arf GTPase Exchange Factors. Structure 2017; 26:106-117.e6. [PMID: 29276036 PMCID: PMC5752578 DOI: 10.1016/j.str.2017.11.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/22/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022]
Abstract
Membrane dynamic processes including vesicle biogenesis depend on Arf
GTPase activation by guanine nucleotide exchange factors (GEFs) containing a
catalytic Sec7 domain and a membrane targeting module such as a PH domain. The
catalytic output of cytohesin family Arf GEFs is controlled by autoinhibitory
interactions that impede accessibility of the exchange site in the Sec7 domain.
These restraints can be relieved through activator Arf-GTP binding to an
allosteric site comprising the PH domain and proximal autoinhibitory elements
(Sec7-PH linker and C-terminal helix). Small angle X-ray scattering and
negative-stain electron microscopy were used to investigate the structural
organization and conformational dynamics of Cytohesin-3 (Grp1) in autoinhibited
and active states. The results support a model in which hinge dynamics in the
autoinhibited state expose the activator site for Arf-GTP binding, while
subsequent C-terminal helix unlatching and repositioning unleash conformational
entropy in the Sec7-PH linker to drive exposure of the exchange site.
Collapse
Affiliation(s)
- Andrew W Malaby
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Sanchaita Das
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas C Irving
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Osman Bilsel
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - David G Lambright
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
28
|
Hoffmann A, Perrier V, Grudinin S. A novel fast Fourier transform accelerated off-grid exhaustive search method for cryo-electron microscopy fitting. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717008172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This paper presents a novel fast Fourier transform (FFT)-based exhaustive search method extended to off-grid translational and rotational degrees of freedom. The method combines the advantages of the FFT-based exhaustive search, which samples all the conformations of a system under study on a grid, with a local optimization technique that guarantees to find the nearest optimal off-grid conformation. The method is demonstrated on a fitting problem and can be readily applied to a docking problem. The algorithm first samples a scoring function on a six-dimensional grid of sizeN6using the FFT. This operation has an asymptotic complexity ofO(N6logN). Then, the method performs the off-grid search using a local quadratic approximation of the cost function and the trust-region optimization algorithm. The computation of the quadratic approximation is also accelerated by FFT at the same additional asymptotic cost ofO(N6logN). The method is demonstrated by fitting atomic protein models into several simulated and experimental maps from cryo-electron microscopy. The method is available at https://team.inria.fr/nano-d/software/offgridfit.
Collapse
|
29
|
Joseph AP, Lagerstedt I, Patwardhan A, Topf M, Winn M. Improved metrics for comparing structures of macromolecular assemblies determined by 3D electron-microscopy. J Struct Biol 2017; 199:12-26. [PMID: 28552721 PMCID: PMC5479444 DOI: 10.1016/j.jsb.2017.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
Abstract
Recent developments in 3-dimensional electron microcopy (3D-EM) techniques and a concomitant drive to look at complex molecular structures, have led to a rapid increase in the amount of volume data available for biomolecules. This creates a demand for better methods to analyse the data, including improved scores for comparison, classification and integration of data at different resolutions. To this end, we developed and evaluated a set of scoring functions that compare 3D-EM volumes. To test our scores we used a benchmark set of volume alignments derived from the Electron Microscopy Data Bank. We find that the performance of different scores vary with the map-type, resolution and the extent of overlap between volumes. Importantly, adding the overlap information to the local scoring functions can significantly improve their precision and accuracy in a range of resolutions. A combined score involving the local mutual information and overlap (LMI_OV) performs best overall, irrespective of the map category, resolution or the extent of overlap, and we recommend this score for general use. The local mutual information score itself is found to be more discriminatory than cross-correlation coefficient for intermediate-to-low resolution maps or when the map size and density distribution differ significantly. For comparing map surfaces, we implemented two filters to detect the surface points, including one based on the 'extent of surface exposure'. We show that scores that compare surfaces are useful at low resolutions and for maps with evident surface features. All the scores discussed are implemented in TEMPy (http://tempy.ismb.lon.ac.uk/).
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom; Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ingvar Lagerstedt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom; Computational Chemistry and Cheminformatics, Lilly UK, Windlesham GU20 6PH, United Kingdom
| | - Ardan Patwardhan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.
| |
Collapse
|
30
|
Miyashita O, Kobayashi C, Mori T, Sugita Y, Tama F. Flexible fitting to cryo-EM density map using ensemble molecular dynamics simulations. J Comput Chem 2017; 38:1447-1461. [PMID: 28370077 DOI: 10.1002/jcc.24785] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 12/25/2022]
Abstract
Flexible fitting is a computational algorithm to derive a new conformational model that conforms to low-resolution experimental data by transforming a known structure. A common application is against data from cryo-electron microscopy to obtain conformational models in new functional states. The conventional flexible fitting algorithms cannot derive correct structures in some cases due to the complexity of conformational transitions. In this study, we show the importance of conformational ensemble in the refinement process by performing multiple fittings trials using a variety of different force constants. Application to simulated maps of Ca2+ ATPase and diphtheria toxin as well as experimental data of release factor 2 revealed that for these systems, multiple conformations with similar agreement with the density map exist and a large number of fitting trials are necessary to generate good models. Clustering analysis can be an effective approach to avoid over-fitting models. In addition, we show that an automatic adjustment of the biasing force constants during the fitting process, implemented as replica-exchange scheme, can improve the success rate. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Osamu Miyashita
- Advanced Institute for Computational Science, RIKEN, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Chigusa Kobayashi
- Advanced Institute for Computational Science, RIKEN, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,iTHES, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yuji Sugita
- Advanced Institute for Computational Science, RIKEN, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,iTHES, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Quantitative Biology Center, RIKEN, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Florence Tama
- Advanced Institute for Computational Science, RIKEN, 6-7-1, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Department of Physics and ITbM, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
31
|
Zulian A, Schiavone M, Giorgio V, Bernardi P. Forty years later: Mitochondria as therapeutic targets in muscle diseases. Pharmacol Res 2016; 113:563-573. [PMID: 27697642 DOI: 10.1016/j.phrs.2016.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
The hypothesis that mitochondrial dysfunction can be a general mechanism for cell death in muscle diseases is 40 years old. The key elements of the proposed pathogenetic sequence (cytosolic Ca2+ overload followed by excess mitochondrial Ca2+ uptake, functional and then structural damage of mitochondria, energy shortage, worsened elevation of cytosolic Ca2+ levels, hypercontracture of muscle fibers, cell necrosis) have been confirmed in amazing detail by subsequent work in a variety of models. The explicit implication of the hypothesis was that it "may provide the basis for a more rational treatment for some conditions even before their primary causes are known" (Wrogemann and Pena, 1976, Lancet, 1, 672-674). This prediction is being fulfilled, and the potential of mitochondria as pharmacological targets in muscle diseases may soon become a reality, particularly through inhibition of the mitochondrial permeability transition pore and its regulator cyclophilin D.
Collapse
Affiliation(s)
- Alessandra Zulian
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valentina Giorgio
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
32
|
Kuzu G, Keskin O, Nussinov R, Gursoy A. PRISM-EM: template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps. Acta Crystallogr D Struct Biol 2016; 72:1137-1148. [PMID: 27710935 PMCID: PMC5053140 DOI: 10.1107/s2059798316013541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/23/2016] [Indexed: 12/29/2022] Open
Abstract
The structures of protein assemblies are important for elucidating cellular processes at the molecular level. Three-dimensional electron microscopy (3DEM) is a powerful method to identify the structures of assemblies, especially those that are challenging to study by crystallography. Here, a new approach, PRISM-EM, is reported to computationally generate plausible structural models using a procedure that combines crystallographic structures and density maps obtained from 3DEM. The predictions are validated against seven available structurally different crystallographic complexes. The models display mean deviations in the backbone of <5 Å. PRISM-EM was further tested on different benchmark sets; the accuracy was evaluated with respect to the structure of the complex, and the correlation with EM density maps and interface predictions were evaluated and compared with those obtained using other methods. PRISM-EM was then used to predict the structure of the ternary complex of the HIV-1 envelope glycoprotein trimer, the ligand CD4 and the neutralizing protein m36.
Collapse
Affiliation(s)
- Guray Kuzu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, 34450 Istanbul, Turkey
- Chemical and Biological Engineering, College of Engineering, Koc University, 34450 Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Attila Gursoy
- Computer Engineering, Koc University, 34450 Istanbul, Turkey
| |
Collapse
|
33
|
van Zundert G, Bonvin A. Defining the limits and reliability of rigid-body fitting in cryo-EM maps using multi-scale image pyramids. J Struct Biol 2016; 195:252-258. [DOI: 10.1016/j.jsb.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
|
34
|
Use of evolutionary information in the fitting of atomic level protein models in low resolution cryo-EM map of a protein assembly improves the accuracy of the fitting. J Struct Biol 2016; 195:294-305. [PMID: 27444391 DOI: 10.1016/j.jsb.2016.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 11/22/2022]
Abstract
Protein-protein interface residues, especially those at the core of the interface, exhibit higher conservation than residues in solvent exposed regions. Here, we explore the ability of this differential conservation to evaluate fittings of atomic models in low-resolution cryo-EM maps and select models from the ensemble of solutions that are often proposed by different model fitting techniques. As a prelude, using a non-redundant and high-resolution structural dataset involving 125 permanent and 95 transient complexes, we confirm that core interface residues are conserved significantly better than nearby non-interface residues and this result is used in the cryo-EM map analysis. From the analysis of inter-component interfaces in a set of fitted models associated with low-resolution cryo-EM maps of ribosomes, chaperones and proteasomes we note that a few poorly conserved residues occur at interfaces. Interestingly a few conserved residues are not in the interface, though they are close to the interface. These observations raise the potential requirement of refitting the models in the cryo-EM maps. We show that sampling an ensemble of models and selection of models with high residue conservation at the interface and in good agreement with the density helps in improving the accuracy of the fit. This study indicates that evolutionary information can serve as an additional input to improve and validate fitting of atomic models in cryo-EM density maps.
Collapse
|
35
|
Konarev PV, Petoukhov MV, Svergun DI. Rapid automated superposition of shapes and macromolecular models using spherical harmonics. J Appl Crystallogr 2016; 49:953-960. [PMID: 27275142 PMCID: PMC4886985 DOI: 10.1107/s1600576716005793] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/07/2016] [Indexed: 01/20/2023] Open
Abstract
A rapid algorithm to superimpose macromolecular models in Fourier space is proposed and implemented (SUPALM). The method uses a normalized integrated cross-term of the scattering amplitudes as a proximity measure between two three-dimensional objects. The reciprocal-space algorithm allows for direct matching of heterogeneous objects including high- and low-resolution models represented by atomic coordinates, beads or dummy residue chains as well as electron microscopy density maps and inhomogeneous multi-phase models (e.g. of protein-nucleic acid complexes). Using spherical harmonics for the computation of the amplitudes, the method is up to an order of magnitude faster than the real-space algorithm implemented in SUPCOMB by Kozin & Svergun [J. Appl. Cryst. (2001 ▸), 34, 33-41]. The utility of the new method is demonstrated in a number of test cases and compared with the results of SUPCOMB. The spherical harmonics algorithm is best suited for low-resolution shape models, e.g. those provided by solution scattering experiments, but also facilitates a rapid cross-validation against structural models obtained by other methods.
Collapse
Affiliation(s)
- Petr V. Konarev
- Laboratory of Reflectometry and Small-Angle Scattering, A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre ‘Crystallography and Photonics’, Russian Academy of Sciences, Leninsky prospekt 59, Moscow, 119333, Russian Federation
| | - Maxim V. Petoukhov
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, 22607, Germany
| | - Dmitri I. Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg, 22607, Germany
| |
Collapse
|
36
|
Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 2016; 531:604-9. [PMID: 27007846 PMCID: PMC4856295 DOI: 10.1038/nature17394] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 02/03/2016] [Indexed: 12/11/2022]
Abstract
The general transcription factor IID (TFIID) plays a central role in the initiation of RNA polymerase II (Pol II)-dependent transcription by nucleating pre-initiation complex (PIC) assembly at the core promoter. TFIID comprises the TATA-binding protein (TBP) and 13 TBP-associated factors (TAF1-13), which specifically interact with a variety of core promoter DNA sequences. Here we present the structure of human TFIID in complex with TFIIA and core promoter DNA, determined by single-particle cryo-electron microscopy at sub-nanometre resolution. All core promoter elements are contacted by subunits of TFIID, with TAF1 and TAF2 mediating major interactions with the downstream promoter. TFIIA bridges the TBP-TATA complex with lobe B of TFIID. We also present the cryo-electron microscopy reconstruction of a fully assembled human TAF-less PIC. Superposition of common elements between the two structures provides novel insights into the general role of TFIID in promoter recognition, PIC assembly, and transcription initiation.
Collapse
|
37
|
Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B. Proc Natl Acad Sci U S A 2016; 113:4176-81. [PMID: 27035968 DOI: 10.1073/pnas.1523234113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many viruses are enveloped by a lipid bilayer acquired during assembly, which is typically studded with one or two types of glycoproteins. These viral surface proteins act as the primary interface between the virus and the host. Entry of enveloped viruses relies on specialized fusogen proteins to help merge the virus membrane with the host membrane. In the multicomponent herpesvirus fusion machinery, glycoprotein B (gB) acts as this fusogen. Although the structure of the gB ectodomain postfusion conformation has been determined, any other conformations (e.g., prefusion, intermediate conformations) have so far remained elusive, thus restricting efforts to develop antiviral treatments and prophylactic vaccines. Here, we have characterized the full-length herpes simplex virus 1 gB in a native membrane by displaying it on cell-derived vesicles and using electron cryotomography. Alongside the known postfusion conformation, a novel one was identified. Its structure, in the context of the membrane, was determined by subvolume averaging and found to be trimeric like the postfusion conformation, but appeared more condensed. Hierarchical constrained density-fitting of domains unexpectedly revealed the fusion loops in this conformation to be apart and pointing away from the anchoring membrane. This vital observation is a substantial step forward in understanding the complex herpesvirus fusion mechanism, and opens up new opportunities for more targeted intervention of herpesvirus entry.
Collapse
|
38
|
The architecture of the Schizosaccharomyces pombe CCR4-NOT complex. Nat Commun 2016; 7:10433. [PMID: 26804377 PMCID: PMC4737751 DOI: 10.1038/ncomms10433] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/11/2015] [Indexed: 11/08/2022] Open
Abstract
CCR4-NOT is a large protein complex present both in cytoplasm and the nucleus of eukaryotic cells. Although it is involved in a variety of distinct processes related to expression of genetic information such as poly(A) tail shortening, transcription regulation, nuclear export and protein degradation, there is only fragmentary information available on some of its nine subunits. Here we show a comprehensive structural characterization of the native CCR4-NOT complex from Schizosaccharomyces pombe. Our cryo-EM 3D reconstruction of the complex, combined with techniques such as immunomicroscopy, RNA-nanogold labelling, docking of the available high-resolution structures and models of different subunits and domains, allow us to propose its full molecular architecture. We locate all functionally defined domains endowed with deadenylating and ubiquitinating activities, the nucleus-specific RNA-interacting subunit Mmi1, as well as surfaces responsible for protein–protein interactions. This information provides insight into cooperation of the different CCR4-NOT complex functions. CCR4-NOT is a protein complex involved in a variety of important genetic processes. Here, the authors report the mid-resolution structure of this complex, and model the positions and contacts between the subunits, providing structural support for the previously reported functions of the complex.
Collapse
|
39
|
Rakesh R, Srinivasan N. Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins. Methods Mol Biol 2016; 1415:193-209. [PMID: 27115634 DOI: 10.1007/978-1-4939-3572-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cryo-Electron Microscopy (cryo-EM) has become an important technique to obtain structural insights into large macromolecular assemblies. However the resolution of the density maps do not allow for its interpretation at atomic level. Hence they are combined with high resolution structures along with information from other experimental or bioinformatics techniques to obtain pseudo-atomic models. Here, we describe the use of evolutionary conservation of residues as obtained from protein structures and alignments of homologous proteins to detect errors in the fitting of atomic structures as well as improve accuracy of the protein-protein interfacial regions in the cryo-EM density maps.
Collapse
Affiliation(s)
- Ramachandran Rakesh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
40
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
41
|
Bettadapura R, Rasheed M, Vollrath A, Bajaj C. PF2fit: Polar Fast Fourier Matched Alignment of Atomistic Structures with 3D Electron Microscopy Maps. PLoS Comput Biol 2015; 11:e1004289. [PMID: 26469938 PMCID: PMC4607507 DOI: 10.1371/journal.pcbi.1004289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/14/2015] [Indexed: 11/30/2022] Open
Abstract
There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.
Collapse
Affiliation(s)
- Radhakrishna Bettadapura
- Radhakrishna Bettadapura Computational Visualization Center/Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Muhibur Rasheed
- Muhibur Rasheed Computational Visualization Center/Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Antje Vollrath
- Antje Vollrath Institut Computational Mathematics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Chandrajit Bajaj
- Chandrajit Bajaj Computational Visualization Center/Institute of Computational Engineering & Sciences/Department of Computer Science, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
42
|
Yuchi Z, Yuen SMWK, Lau K, Underhill AQ, Cornea RL, Fessenden JD, Van Petegem F. Crystal structures of ryanodine receptor SPRY1 and tandem-repeat domains reveal a critical FKBP12 binding determinant. Nat Commun 2015; 6:7947. [PMID: 26245150 PMCID: PMC4530471 DOI: 10.1038/ncomms8947] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 06/30/2015] [Indexed: 12/22/2022] Open
Abstract
Ryanodine receptors (RyRs) form calcium release channels located in the membranes of the sarcoplasmic and endoplasmic reticulum. RyRs play a major role in excitation-contraction coupling and other Ca2+-dependent signalling events, and consist of several globular domains that together form a large assembly. Here we describe the crystal structures of the SPRY1 and tandem-repeat domains at 1.2–1.5 Å resolution, which reveal several structural elements not detected in recent cryo-EM reconstructions of RyRs. The cryo-EM studies disagree on the position of SPRY domains, which had been proposed based on homology modelling. Computational docking of the crystal structures, combined with FRET studies, show that the SPRY1 domain is located next to FK506-binding protein (FKBP). Molecular dynamics flexible fitting and mutagenesis experiments suggest a hydrophobic cluster within SPRY1 that is crucial for FKBP binding. A RyR1 disease mutation, N760D, appears to directly impact FKBP binding through interfering with SPRY1 folding. The ryanodine receptor (RyR) is a large multi-domain ion channel that functions to release calcium from the endoplasmic or sarcoplasmic reticulum. Here the authors present crystal structures of the SPRY1 and tandem repeat domains of RyR, allowing precise positioning of the domains and linking disease mutations to RyR function.
Collapse
Affiliation(s)
- Zhiguang Yuchi
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Siobhan M Wong King Yuen
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Kelvin Lau
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Ainsley Q Underhill
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55455, USA
| | - James D Fessenden
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada V6T 1Z3
| |
Collapse
|
43
|
Bernardi P, Di Lisa F, Fogolari F, Lippe G. From ATP to PTP and Back: A Dual Function for the Mitochondrial ATP Synthase. Circ Res 2015; 116:1850-62. [PMID: 25999424 DOI: 10.1161/circresaha.115.306557] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mitochondria not only play a fundamental role in heart physiology but are also key effectors of dysfunction and death. This dual role assumes a new meaning after recent advances on the nature and regulation of the permeability transition pore, an inner membrane channel whose opening requires matrix Ca(2+) and is modulated by many effectors including reactive oxygen species, matrix cyclophilin D, Pi (inorganic phosphate), and matrix pH. The recent demonstration that the F-ATP synthase can reversibly undergo a Ca(2+)-dependent transition to form a channel that mediates the permeability transition opens new perspectives to the field. These findings demand a reassessment of the modifications of F-ATP synthase that take place in the heart under pathological conditions and of their potential role in determining the transition of F-ATP synthase from and energy-conserving into an energy-dissipating device.
Collapse
Affiliation(s)
- Paolo Bernardi
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy.
| | - Fabio Di Lisa
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy
| | - Federico Fogolari
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy
| | - Giovanna Lippe
- From the Department of Biomedical Sciences, University of Padova, Italy (P.B., F.D.L.); and Department of Medical and Biological Sciences (F.F) and Department of Food Science (G.L.), University of Udine, Udine, Italy
| |
Collapse
|
44
|
Farabella I, Vasishtan D, Joseph AP, Pandurangan AP, Sahota H, Topf M. TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits. J Appl Crystallogr 2015; 48:1314-1323. [PMID: 26306092 PMCID: PMC4520291 DOI: 10.1107/s1600576715010092] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/24/2015] [Indexed: 12/21/2022] Open
Abstract
TEMPy is an object-oriented Python library that provides the means to validate density fits in electron microscopy reconstructions. This article highlights several features of particular interest for this purpose and includes some customized examples. Three-dimensional electron microscopy is currently one of the most promising techniques used to study macromolecular assemblies. Rigid and flexible fitting of atomic models into density maps is often essential to gain further insights into the assemblies they represent. Currently, tools that facilitate the assessment of fitted atomic models and maps are needed. TEMPy (template and electron microscopy comparison using Python) is a toolkit designed for this purpose. The library includes a set of methods to assess density fits in intermediate-to-low resolution maps, both globally and locally. It also provides procedures for single-fit assessment, ensemble generation of fits, clustering, and multiple and consensus scoring, as well as plots and output files for visualization purposes to help the user in analysing rigid and flexible fits. The modular nature of TEMPy helps the integration of scoring and assessment of fits into large pipelines, making it a tool suitable for both novice and expert structural biologists.
Collapse
Affiliation(s)
- Irene Farabella
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| | - Daven Vasishtan
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford , Oxford OX3 7BN, UK
| | - Agnel Praveen Joseph
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell , Didcot, Oxon OX11 0QX, UK
| | - Arun Prasad Pandurangan
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| | - Harpal Sahota
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London , Malet street, London WC1E 7HX, UK
| |
Collapse
|
45
|
Olmeda B, García‐Álvarez B, Gómez MJ, Martínez‐Calle M, Cruz A, Pérez‐Gil J. A model for the structure and mechanism of action of pulmonary surfactant protein B. FASEB J 2015; 29:4236-47. [DOI: 10.1096/fj.15-273458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Bárbara Olmeda
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | | | - Manuel J. Gómez
- Centro de Astrobiología (INTA‐CSIC), Torrejón de ArdozMadridSpain
| | - Marta Martínez‐Calle
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Antonio Cruz
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| | - Jesús Pérez‐Gil
- Departmento de Bioquímica, Facultad de BiologíaUniversidad ComplutenseMadridSpain
| |
Collapse
|
46
|
Van Petegem F. Ryanodine Receptors: Allosteric Ion Channel Giants. J Mol Biol 2015; 427:31-53. [DOI: 10.1016/j.jmb.2014.08.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 01/27/2023]
|
47
|
López-Blanco JR, Chacón P. Structural modeling from electron microscopy data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- José Ramón López-Blanco
- Department of Biological Physical Chemistry; Rocasolano Physical Chemistry Institute, CSIC; Madrid Spain
| | - Pablo Chacón
- Department of Biological Physical Chemistry; Rocasolano Physical Chemistry Institute, CSIC; Madrid Spain
| |
Collapse
|
48
|
Derevyanko G, Grudinin S. HermiteFit: fast-fitting atomic structures into a low-resolution density map using three-dimensional orthogonal Hermite functions. ACTA ACUST UNITED AC 2014; 70:2069-84. [PMID: 25084327 DOI: 10.1107/s1399004714011493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/19/2014] [Indexed: 08/30/2023]
Abstract
HermiteFit, a novel algorithm for fitting a protein structure into a low-resolution electron-density map, is presented. The algorithm accelerates the rotation of the Fourier image of the electron density by using three-dimensional orthogonal Hermite functions. As part of the new method, an algorithm for the rotation of the density in the Hermite basis and an algorithm for the conversion of the expansion coefficients into the Fourier basis are presented. HermiteFit was implemented using the cross-correlation or the Laplacian-filtered cross-correlation as the fitting criterion. It is demonstrated that in the Hermite basis the Laplacian filter has a particularly simple form. To assess the quality of density encoding in the Hermite basis, an analytical way of computing the crystallographic R factor is presented. Finally, the algorithm is validated using two examples and its efficiency is compared with two widely used fitting methods, ADP_EM and colores from the Situs package. HermiteFit will be made available at http://nano-d.inrialpes.fr/software/HermiteFit or upon request from the authors.
Collapse
Affiliation(s)
- Georgy Derevyanko
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | | |
Collapse
|
49
|
Xu M, Alber F. Automated target segmentation and real space fast alignment methods for high-throughput classification and averaging of crowded cryo-electron subtomograms. Bioinformatics 2013; 29:i274-82. [PMID: 23812994 PMCID: PMC3694676 DOI: 10.1093/bioinformatics/btt225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Cryo-electron tomography allows the imaging of macromolecular complexes in near living conditions. To enhance the nominal resolution of a structure it is necessary to align and average individual subtomograms each containing identical complexes. However, if the sample of complexes is heterogeneous, it is necessary to first classify subtomograms into groups of identical complexes. This task becomes challenging when tomograms contain mixtures of unknown complexes extracted from a crowded environment. Two main challenges must be overcomed: First, classification of subtomograms must be performed without knowledge of template structures. However, most alignment methods are too slow to perform reference-free classification of a large number of (e.g. tens of thousands) of subtomograms. Second, subtomograms extracted from crowded cellular environments, contain often fragments of other structures besides the target complex. However, alignment methods generally assume that each subtomogram only contains one complex. Automatic methods are needed to identify the target complexes in a subtomogram even when its shape is unknown. RESULTS In this article, we propose an automatic and systematic method for the isolation and masking of target complexes in subtomograms extracted from crowded environments. Moreover, we also propose a fast alignment method using fast rotational matching in real space. Our experiments show that, compared with our previously proposed fast alignment method in reciprocal space, our new method significantly improves the alignment accuracy for highly distorted and especially crowded subtomograms. Such improvements are important for achieving successful and unbiased high-throughput reference-free structural classification of complexes inside whole-cell tomograms. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Min Xu
- University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | | |
Collapse
|
50
|
Flores SC. Fast fitting to low resolution density maps: elucidating large-scale motions of the ribosome. Nucleic Acids Res 2013; 42:e9. [PMID: 24081579 PMCID: PMC3902909 DOI: 10.1093/nar/gkt906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Determining the conformational rearrangements of large macromolecules is challenging experimentally and computationally. Case in point is the ribosome; it has been observed by high-resolution crystallography in several states, but many others are known only from low-resolution methods including cryo-electron microscopy. Combining these data into dynamical trajectories that may aid understanding of its largest-scale conformational changes has so far remained out of reach of computational methods. Most existing methods either model all atoms explicitly, resulting in often prohibitive cost, or use approximations that lose interesting structural and dynamical detail. In this work, I introduce Internal Coordinate Flexible Fitting, which uses full atomic forces and flexibility in limited regions of a model, capturing extensive conformational rearrangements at low cost. I use it to turn multiple low-resolution density maps, crystallographic structures and biochemical information into unified all-atoms trajectories of ribosomal translocation. Internal Coordinate Flexible Fitting is three orders of magnitude faster than the most comparable existing method.
Collapse
Affiliation(s)
- Samuel Coulbourn Flores
- Computational and Systems Biology Program, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, 75321 Uppsala, Sweden
| |
Collapse
|