1
|
Minami S, Niwa T, Uemura E, Koike R, Taguchi H, Ota M. Prediction of chaperonin GroE substrates using small structural patterns of proteins. FEBS Open Bio 2023; 13:779-794. [PMID: 36869604 PMCID: PMC10068320 DOI: 10.1002/2211-5463.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023] Open
Abstract
Molecular chaperones are indispensable proteins that assist the folding of aggregation-prone proteins into their functional native states, thereby maintaining organized cellular systems. Two of the best-characterized chaperones are the Escherichia coli chaperonins GroEL and GroES (GroE), for which in vivo obligate substrates have been identified by proteome-wide experiments. These substrates comprise various proteins but exhibit remarkable structural features. They include a number of α/β proteins, particularly those adopting the TIM β/α barrel fold. This observation led us to speculate that GroE obligate substrates share a structural motif. Based on this hypothesis, we exhaustively compared substrate structures with the MICAN alignment tool, which detects common structural patterns while ignoring the connectivity or orientation of secondary structural elements. We selected four (or five) substructures with hydrophobic indices that were mostly included in substrates and excluded in others, and developed a GroE obligate substrate discriminator. The substructures are structurally similar and superimposable on the 2-layer 2α4β sandwich, the most popular protein substructure, implying that targeting this structural pattern is a useful strategy for GroE to assist numerous proteins. Seventeen false positives predicted by our methods were experimentally examined using GroE-depleted cells, and 9 proteins were confirmed to be novel GroE obligate substrates. Together, these results demonstrate the utility of our common substructure hypothesis and prediction method.
Collapse
Affiliation(s)
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Eri Uemura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Japan.,Institute for Glyco-core Research, Nagoya University, Japan
| |
Collapse
|
2
|
Taguchi H, Koike-Takeshita A. In vivo client proteins of the chaperonin GroEL-GroES provide insight into the role of chaperones in protein evolution. Front Mol Biosci 2023; 10:1091677. [PMID: 36845542 PMCID: PMC9950496 DOI: 10.3389/fmolb.2023.1091677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Protein folding is often hampered by intermolecular protein aggregation, which can be prevented by a variety of chaperones in the cell. Bacterial chaperonin GroEL is a ring-shaped chaperone that forms complexes with its cochaperonin GroES, creating central cavities to accommodate client proteins (also referred as substrate proteins) for folding. GroEL and GroES (GroE) are the only indispensable chaperones for bacterial viability, except for some species of Mollicutes such as Ureaplasma. To understand the role of chaperonins in the cell, one important goal of GroEL research is to identify a group of obligate GroEL/GroES clients. Recent advances revealed hundreds of in vivo GroE interactors and obligate chaperonin-dependent clients. This review summarizes the progress on the in vivo GroE client repertoire and its features, mainly for Escherichia coli GroE. Finally, we discuss the implications of the GroE clients for the chaperone-mediated buffering of protein folding and their influences on protein evolution.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Tokyo Institute of Technology, Yokohama, Japan,*Correspondence: Hideki Taguchi,
| | - Ayumi Koike-Takeshita
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| |
Collapse
|
3
|
Stan G, Lorimer GH, Thirumalai D. Friends in need: How chaperonins recognize and remodel proteins that require folding assistance. Front Mol Biosci 2022; 9:1071168. [PMID: 36479385 PMCID: PMC9720267 DOI: 10.3389/fmolb.2022.1071168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 08/19/2023] Open
Abstract
Chaperonins are biological nanomachines that help newly translated proteins to fold by rescuing them from kinetically trapped misfolded states. Protein folding assistance by the chaperonin machinery is obligatory in vivo for a subset of proteins in the bacterial proteome. Chaperonins are large oligomeric complexes, with unusual seven fold symmetry (group I) or eight/nine fold symmetry (group II), that form double-ring constructs, enclosing a central cavity that serves as the folding chamber. Dramatic large-scale conformational changes, that take place during ATP-driven cycles, allow chaperonins to bind misfolded proteins, encapsulate them into the expanded cavity and release them back into the cellular environment, regardless of whether they are folded or not. The theory associated with the iterative annealing mechanism, which incorporated the conformational free energy landscape description of protein folding, quantitatively explains most, if not all, the available data. Misfolded conformations are associated with low energy minima in a rugged energy landscape. Random disruptions of these low energy conformations result in higher free energy, less folded, conformations that can stochastically partition into the native state. Two distinct mechanisms of annealing action have been described. Group I chaperonins (GroEL homologues in eubacteria and endosymbiotic organelles), recognize a large number of misfolded proteins non-specifically and operate through highly coordinated cooperative motions. By contrast, the less well understood group II chaperonins (CCT in Eukarya and thermosome/TF55 in Archaea), assist a selected set of substrate proteins. Sequential conformational changes within a CCT ring are observed, perhaps promoting domain-by-domain substrate folding. Chaperonins are implicated in bacterial infection, autoimmune disease, as well as protein aggregation and degradation diseases. Understanding the chaperonin mechanism and the specific proteins they rescue during the cell cycle is important not only for the fundamental aspect of protein folding in the cellular environment, but also for effective therapeutic strategies.
Collapse
Affiliation(s)
- George Stan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - George H. Lorimer
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Austin, TX, United States
- Department of Physics, University of Texas, Austin, TX, United States
| |
Collapse
|
4
|
Horovitz A, Reingewertz TH, Cuéllar J, Valpuesta JM. Chaperonin Mechanisms: Multiple and (Mis)Understood? Annu Rev Biophys 2022; 51:115-133. [DOI: 10.1146/annurev-biophys-082521-113418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from Escherichia coli and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Jorge Cuéllar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
5
|
Thirumalai D, Lorimer GH, Hyeon C. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Sci 2019; 29:360-377. [PMID: 31800116 DOI: 10.1002/pro.3795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Molecular chaperones are ATP-consuming machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states. Unassisted folding occurs by the kinetic partitioning mechanism according to which folding to the native state, with low probability as well as misfolding to one of the many metastable states, with high probability, occur rapidly. GroEL is an all-purpose stochastic machine that assists misfolded substrate proteins to fold. The RNA chaperones such as CYT-19, which are ATP-consuming enzymes, help the folding of ribozymes that get trapped in metastable states for long times. GroEL does not interact with the folded proteins but CYT-19 disrupts both the folded and misfolded ribozymes. The structures of GroEL and RNA chaperones are strikingly different. Despite these differences, the iterative annealing mechanism (IAM) quantitatively explains all the available experimental data for assisted folding of proteins and ribozymes. Driven by ATP binding and hydrolysis and GroES binding, GroEL undergoes a catalytic cycle during which it samples three allosteric states, T (apo), R (ATP bound), and R″ (ADP bound). Analyses of the experimental data show that the efficiency of the GroEL-GroES machinery and mutants is determined by the resetting rate k R ″ → T , which is largest for the wild-type (WT) GroEL. Generalized IAM accurately predicts the folding kinetics of Tetrahymena ribozyme and its variants. Chaperones maximize the product of the folding rate and the steady-state native state fold by driving the substrates out of equilibrium. Neither the absolute yield nor the folding rate is optimized.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - George H Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
6
|
Comparative genomic analysis of mollicutes with and without a chaperonin system. PLoS One 2018; 13:e0192619. [PMID: 29438383 PMCID: PMC5810989 DOI: 10.1371/journal.pone.0192619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/27/2018] [Indexed: 11/19/2022] Open
Abstract
The GroE chaperonin system, which comprises GroEL and GroES, assists protein folding in vivo and in vitro. It is conserved in all prokaryotes except in most, but not all, members of the class of mollicutes. In Escherichia coli, about 60 proteins were found to be obligatory clients of the GroE system. Here, we describe the properties of the homologs of these GroE clients in mollicutes and the evolution of chaperonins in this class of bacteria. Comparing the properties of these homologs in mollicutes with and without chaperonins enabled us to search for features correlated with the presence of GroE. Interestingly, no sequence-based features of proteins such as average length, amino acid composition and predicted folding/disorder propensity were found to be affected by the absence of GroE. Other properties such as genome size and number of proteins were also found to not differ between mollicute species with and without GroE. Our data suggest that two clades of mollicutes re-acquired the GroE system, thereby supporting the view that gaining the system occurred polyphyletically and not monophyletically, as previously debated. Our data also suggest that there might have been three isolated cases of lateral gene transfer from specific bacterial sources. Taken together, our data indicate that loss of GroE does not involve crossing a high evolutionary barrier and can be compensated for by a small number of changes within the few dozen client proteins.
Collapse
|
7
|
Bandyopadhyay B, Goldenzweig A, Unger T, Adato O, Fleishman SJ, Unger R, Horovitz A. Local energetic frustration affects the dependence of green fluorescent protein folding on the chaperonin GroEL. J Biol Chem 2017; 292:20583-20591. [PMID: 29066625 DOI: 10.1074/jbc.m117.808576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/21/2017] [Indexed: 11/06/2022] Open
Abstract
The GroE chaperonin system in Escherichia coli comprises GroEL and GroES and facilitates ATP-dependent protein folding in vivo and in vitro Proteins with very similar sequences and structures can differ in their dependence on GroEL for efficient folding. One potential but unverified source for GroEL dependence is frustration, wherein not all interactions in the native state are optimized energetically, thereby potentiating slow folding and misfolding. Here, we chose enhanced green fluorescent protein as a model system and subjected it to random mutagenesis, followed by screening for variants whose in vivo folding displays increased or decreased GroEL dependence. We confirmed the altered GroEL dependence of these variants with in vitro folding assays. Strikingly, mutations at positions predicted to be highly frustrated were found to correlate with decreased GroEL dependence. Conversely, mutations at positions with low frustration were found to correlate with increased GroEL dependence. Further support for this finding was obtained by showing that folding of an enhanced green fluorescent protein variant designed computationally to have reduced frustration is indeed less GroEL-dependent. Our results indicate that changes in local frustration also affect partitioning in vivo between spontaneous and chaperonin-mediated folding. Hence, the design of minimally frustrated sequences can reduce chaperonin dependence and improve protein expression levels.
Collapse
Affiliation(s)
| | | | - Tamar Unger
- the Israel Structural Proteomics Centre, Weizmann Institute of Science, Rehovot 7610001, Israel and
| | - Orit Adato
- the Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | - Ron Unger
- the Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
8
|
Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding. PLoS Comput Biol 2015; 11:e1004496. [PMID: 26394388 PMCID: PMC4578939 DOI: 10.1371/journal.pcbi.1004496] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/03/2015] [Indexed: 11/23/2022] Open
Abstract
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. Several non-native proteins require molecular chaperones for proper folding. Many unfolded proteins if not folded accurately, become causal factors in various types of misfolding or aggregation induced diseases such as Alzheimer′s, Huntington′s and several other neurodegenerative disorders. However, structural information of non-folded proteins especially chaperone-dependent proteins is difficult to probe experimentally due to their inherent aggregation propensities. In this work, we study DapA protein, which exhibits obligate requirement on GroEL chaperonin machinery for its folding. We use molecular dynamics simulations to reveal populated intermediate structures of DapA in atomic details. The most plausible intermediate was found to be in agreement with recently reported hydrogen-exchange experimental data. Significant increase in surface exposed hydrophobicity was observed in intermediates compared to native, which was further validated using ANS binding experiments. We also constructed network model of these intermediates that provides remarkable insights into stable hubs (or important residues) underlying diverse states of unfolded proteins. In summary, our work provides a molecular picture of an unfolded protein that is en route to chaperone binding, and these underlying structural properties might act as a molecular signal for their productive folding.
Collapse
|
9
|
Das Roy R, Bhardwaj M, Bhatnagar V, Chakraborty K, Dash D. How do eubacterial organisms manage aggregation-prone proteome? F1000Res 2014; 3:137. [PMID: 25339987 PMCID: PMC4193397 DOI: 10.12688/f1000research.4307.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 11/20/2022] Open
Abstract
Eubacterial genomes vary considerably in their nucleotide composition. The percentage of genetic material constituted by guanosine and cytosine (GC) nucleotides ranges from 20% to 70%. It has been posited that GC-poor organisms are more dependent on protein folding machinery. Previous studies have ascribed this to the accumulation of mildly deleterious mutations in these organisms due to population bottlenecks. This phenomenon has been supported by protein folding simulations, which showed that proteins encoded by GC-poor organisms are more prone to aggregation than proteins encoded by GC-rich organisms. To test this proposition using a genome-wide approach, we classified different eubacterial proteomes in terms of their aggregation propensity and chaperone-dependence using multiple machine learning models. In contrast to the expected decrease in protein aggregation with an increase in GC richness, we found that the aggregation propensity of proteomes increases with GC content. A similar and even more significant correlation was obtained with the GroEL-dependence of proteomes: GC-poor proteomes have evolved to be less dependent on GroEL than GC-rich proteomes. We thus propose that a decrease in eubacterial GC content may have been selected in organisms facing proteostasis problems.
Collapse
Affiliation(s)
- Rishi Das Roy
- GNR Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, 110007, India ; Department of Biotechnology, University of Pune, Pune, 411007, India
| | - Manju Bhardwaj
- Department of Computer Science, Maitreyi College, Chanakyapuri, Delhi, 110021, India
| | - Vasudha Bhatnagar
- Department of Computer Science, Faculty of Mathematical Sciences, University of Delhi, Delhi, 110007, India
| | - Kausik Chakraborty
- GNR Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, 110007, India
| | - Debasis Dash
- GNR Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi, 110007, India ; Department of Biotechnology, University of Pune, Pune, 411007, India
| |
Collapse
|
10
|
Dahiya V, Chaudhuri TK. Chaperones GroEL/GroES accelerate the refolding of a multidomain protein through modulating on-pathway intermediates. J Biol Chem 2013; 289:286-98. [PMID: 24247249 DOI: 10.1074/jbc.m113.518373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.
Collapse
Affiliation(s)
- Vinay Dahiya
- From the Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
11
|
Bogumil D, Dagan T. Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 2012; 51:9941-53. [PMID: 23167595 DOI: 10.1021/bi3013643] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular chaperones support protein folding and unfolding along with assembly and translocation of protein complexes. Chaperones have been recognized as important mediators between an organismal genotype and phenotype as well as important maintainers of cellular fitness under environmental conditions that induce high mutational loads. Here we review recent studies revealing that the folding assistance supplied by chaperones is evident in genomic sequences implicating chaperone-mediated folding as an influential factor during protein evolution. Interaction of protein with chaperones ensures a proper folding and function, yet an adaptation to obligatory dependence on such assistance may be irreversible, representing an evolutionary trap. A correlation between the requirement for a chaperone and protein expression level indicates that the evolution of substrate-chaperone interaction is bounded by the required substrate abundance within the cell. Accumulating evidence suggests that the utility of chaperones is governed by a delicate balance between their help in mitigating the risks of protein misfolding and aggregate formation on one hand and the slower rate of protein maturation and the energetic cost of chaperone synthesis on the other.
Collapse
Affiliation(s)
- David Bogumil
- Institute for Genomic Microbiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
12
|
Azia A, Unger R, Horovitz A. What distinguishes GroEL substrates from other Escherichia coli proteins? FEBS J 2012; 279:543-50. [DOI: 10.1111/j.1742-4658.2011.08458.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Abstract
GroEL is a chaperone thought of as essential for bacterial life. However, some species of Mollicutes are missing GroEL. We use phylogenetic analysis to show that the presence of GroEL is polyphyletic among the Mollicutes, and that there is evidence for lateral gene transfer of GroEL to Mycoplasma penetrans from the Proteobacteria. Furthermore, we propose that the presence of GroEL in Mycoplasma may be required for invasion of host tissue, suggesting that GroEL may act as an adhesin-invasin.
Collapse
Affiliation(s)
- Gregory W Clark
- Ontario Cancer Institute, University Health Network and Department of Medical Biophysics, University of Toronto, 5-354 MaRS TMDT, 101 College St., Toronto, ON M5G 1L7, Canada
| | | |
Collapse
|
14
|
Raineri E, Ribeca P, Serrano L, Maier T. A more precise characterization of chaperonin substrates. ACTA ACUST UNITED AC 2010; 26:1685-9. [PMID: 20519287 DOI: 10.1093/bioinformatics/btq287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Molecular chaperones prevent the aggregation of their substrate proteins and thereby ensure that they reach their functional native state. The bacterial GroEL/ES chaperonin system is understood in great detail on a structural, mechanistic and functional level; its interactors in Escherichia coli have been identified and characterized. However, a long-standing question in the field is: What makes a protein a chaperone substrate? RESULTS Here we identify, using a bioinformatics-based approach a simple set of quantities, which characterize the GroEL-substrate proteome. We define three novel parameters differentiating GroEL interactors from other cellular proteins: lower rate of evolution, hydrophobicity and aggregation propensity. Combining them with other known features to a simple Bayesian predictor allows us to identify known homologous and heterologous GroEL substrateproteins. We discuss our findings in relation to established mechanisms of protein folding and evolutionary buffering by chaperones.
Collapse
Affiliation(s)
- Emanuele Raineri
- CNAG Centro Nacional de Análisis Genómico, Parc Cientific de Barcelona, Baldiri Reixac 4, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Jayasinghe M, Tewmey C, Stan G. Versatile substrate protein recognition mechanism of the eukaryotic chaperonin CCT. Proteins 2010; 78:1254-65. [PMID: 19950366 DOI: 10.1002/prot.22644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Group II chaperonins, found in eukaryotic and archaeal organisms, recognize substrate proteins through diverse mechanisms that involve either hydrophobic- or electrostatic-dominated interactions. This action is distinct from the universal substrate recognition mechanism of group I chaperonins, which bind a wide spectrum of non-native proteins primarily through hydrophobic interactions. We use computational approaches to pinpoint the substrate protein binding sites of the gamma-subunit of the eukaryotic chaperonin CCT and to identify its interactions with the stringent substrate beta-tubulin. Protein-protein docking methods reveal intrinsic binding sites of CCT comprising a helical (HL) region, homologous to the GroEL-binding site, and the helical protrusion (HP) region. We performed molecular dynamics simulations of the solvated CCTgamma apical domain, beta-tubulin peptide-CCTgamma complexes, and isolated beta-tubulin peptides. We find that tubulin binds to CCTgamma through an extensive interface that spans both the HL region and the HP region. HL interactions involve both hydrophobic and electrostatic contacts, while binding to the HP region is stabilized almost exclusively by a salt bridge network. On the basis of additional simulations of a beta-tubulin-CCTgamma complex that involves a reduced interface, centered onto the HP region, we conclude that this salt bridge network is the minimal stabilizing interaction required. Strong conservation of the charged amino acids that participate in the salt bridge network, Arg306 and Glu271, indicates a general mechanism across the nonidentical CCT subunits and group II chaperonins.
Collapse
Affiliation(s)
- Manori Jayasinghe
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | |
Collapse
|
16
|
Tartaglia GG, Dobson CM, Hartl FU, Vendruscolo M. Physicochemical determinants of chaperone requirements. J Mol Biol 2010; 400:579-88. [PMID: 20416322 DOI: 10.1016/j.jmb.2010.03.066] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/26/2010] [Indexed: 11/30/2022]
Abstract
We describe a series of stringent relationships between abundance, solubility and chaperone usage of proteins. Based on these relationships, we show that the need of Escherichia coli proteins for the chaperonin GroEL can be predicted with 86% accuracy. Furthermore, from the observation that the abundance and solubility of proteins depend on the physicochemical properties of their amino acid sequences, we demonstrate that the requirement for GroEL can also be predicted directly from the sequences with 90% accuracy. These results indicate that the physicochemical properties of the amino acid sequences represent an essential component of the cellular quality control system that ensures the maintenance of protein homeostasis in living systems.
Collapse
|
17
|
A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 2010; 29:1552-64. [PMID: 20360681 DOI: 10.1038/emboj.2010.52] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 03/08/2010] [Indexed: 01/17/2023] Open
Abstract
Chaperonins are absolutely required for the folding of a subset of proteins in the cell. An earlier proteome-wide analysis of Escherichia coli chaperonin GroEL/GroES (GroE) interactors predicted obligate chaperonin substrates, which were termed Class III substrates. However, the requirement of chaperonins for in vivo folding has not been fully examined. Here, we comprehensively assessed the chaperonin requirement using a conditional GroE expression strain, and concluded that only approximately 60% of Class III substrates are bona fide obligate GroE substrates in vivo. The in vivo obligate substrates, combined with the newly identified obligate substrates, were termed Class IV substrates. Class IV substrates are restricted to proteins with molecular weights that could be encapsulated in the chaperonin cavity, are enriched in alanine/glycine residues, and have a strong structural preference for aggregation-prone folds. Notably, approximately 70% of the Class IV substrates appear to be metabolic enzymes, supporting a hypothetical role of GroE in enzyme evolution.
Collapse
|
18
|
Warnecke T, Hurst LD. GroEL dependency affects codon usage--support for a critical role of misfolding in gene evolution. Mol Syst Biol 2010; 6:340. [PMID: 20087338 PMCID: PMC2824523 DOI: 10.1038/msb.2009.94] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/09/2009] [Indexed: 11/12/2022] Open
Abstract
Integrating genome-scale sequence, expression, structural and protein interaction data from E. coli we establish an interaction between chaperone (GroEL) dependency and optimal codon usage. Highly expressed sporadic substrates of GroEL employ more optimal codons than expected, show enrichment for optimal codons at structurally sensitive sites and greater conservation of codon optimality under conditions of relaxed purifying selection. We suggest that highly expressed genes cannot routinely utilize GroEL for error control so that codon usage has evolved to provide complementary error limitation, whereas obligate GroEL substrates experience relaxed selection on codon usage. Our results support a critical role of misfolding prevention in gene evolution.
Errors during gene expression are relatively commonplace, which has prompted speculations that many features of gene and genome anatomy and organization have evolved to reduce or mitigate such errors. One type of error that can be particularly costly occurs when the polypeptide chain that emerges from the ribosome fails to fold into its native structure. Some aberrantly folded proteins, exposing hydrophobic residues that would normally be buried, may begin to promiscuously interact with other proteins, become toxic to the cell and thus pose a substantial fitness concern (Gregersen et al, 2006). In trans, molecular chaperones have long been recognized to play crucial roles in misfolding prevention and remedy. In cis, it has recently been suggested that the use of optimal codons limits mistranslation-induced protein misfolding (Drummond and Wilke, 2008). Evidence for the latter is centred on the argument that synonymous codons differ in their propensity to cause mistranslation. Translationally optimal codons, typically represented by more abundant cognate tRNAs (Duret, 2000), are thought less likely to cause ribosomal stalling and/or incorporation of the wrong amino acid. Here, we suggest that the role, if any, of error limitation in cis can be revealed by studying its interaction with well-established error management systems in trans (chaperones). If codon usage does indeed play a tangible role in misfolding prevention, we would expect selection on codon identity to vary with the degree to which a protein can rely on other error control mechanisms, namely chaperones. We use the E. coli chaperonin GroEL as a model system to explore whether there is any interaction between optimal codon usage and chaperone dependency. Kerner et al (2005) had previously determined GroEL substrates on a genome-wide scale. Based on enrichment in GroEL complexes the authors assigned ∼250 proteins to three classes reflecting GroEL dependency: class-I proteins, only a small fraction of which (<1%) associates with GroEL and which spontaneously regain some activity; class-II proteins, which only exhibit spontaneous refolding at more permissive temperatures and class-III proteins, which are obligate substrates of GroEL and largely fail to refold even under more benign conditions. Notably, although on average less abundant than class-I/II proteins (‘sporadic clients'), class-III proteins (‘obligate clients') occupy ∼80% of GroEL's capacity in vivo. Consequently, a higher proportion (∼100% versus ∼20% for class-II and ∼1% for class-I) of these proteins is routinely processed by the GroEL system. We demonstrate that sporadic but not obligate clients of GroEL exhibit enhanced codon adaptation, carefully controlling for possible confounding factors, notably expression level and protein length (Figure 1). We also point out that genes that recently entered the E. coli genome via horizontal gene transfer will distort equilibrium analyses of codon usage in bacteria and should thus be routinely eliminated from analysis. Building on earlier work by Zhou et al (2009), we further show that sporadic substrates are conspicuously enriched for optimal codons at structurally sensitive sites, consistent with more severe fitness implications of codon choice for these proteins. Lastly, we reveal that codon optimality in sporadic clients is more highly conserved in S. dysenteriae. S. dysenteriae is an E. coli clone that has diverged relatively recently from the E. coli K12 strain and has adopted an intracellular lifestyle (Balbi et al, 2009). Concomitant with that lifestyle, Shigella has experienced a lower effective population size and therefore reduced efficiency of purifying selection. This has generated conditions where, overall, codon optimality has started to decay. However, when we followed the fate of ancestrally optimal codons at buried sites in the S. dysenteriae and E. coli K12 genomes, we found that a lower fraction of buried sites has lost codon optimality in sporadic substrates (Figure 4), again consistent with greater structural importance of codon choice in these substrates. Based on the these findings, we suggest the following explanation: As mentioned above, class-III substrates are defined not only by GroEL being critical for proper folding, but also by occupying most of GroEL's capacity (∼80%). With a high proportion of class-III protein passaged through the GroEL system, mistranslation errors in these proteins weigh less severely as GroEL can remedy at least some misfolding that ensues. In contrast, class-I and II genes are more highly expressed and cannot routinely rely on GroEL to rectify folding errors. Yet class-I/II proteins are clearly liable to misfold as testified by their sporadic association with GroEL. We argue that augmenting GroEL's capacity to address the misfolding propensity of these genes would be prohibitively costly to the organism and that, as an alternative strategy, these genes employ optimal codons to reduce the rate of misfolding error. Our findings (a) reveal a cis–trans interaction between codon usage and chaperones in providing an integrated error management system, (b) provide independent evidence for a role of misfolding in shaping gene evolution and (c) suggest that the burden of deleterious mutations in long-term bottlenecking populations like that of the insect endosymbiont Buchnera not only comprises unfavourable amino-acid (Moran, 1996) but also synonymous substitutions. It has recently been suggested that the use of optimal codons limits mistranslation-induced protein misfolding, yet evidence for this remains largely circumstantial. In contrast, molecular chaperones have long been recognized to play crucial roles in misfolding prevention and remedy. We propose that putative error limitation in cis can be elucidated by examining the interaction between codon usage and chaperoning processes. Using Escherichia coli as a model system, we find that codon optimality covaries with dependency on the chaperonin GroEL. Sporadic but not obligate substrates of GroEL exhibit higher average codon adaptation and are conspicuously enriched for optimal codons at structurally sensitive sites. Further, codon optimality of sporadic clients is more conserved in the E. coli clone Shigella dysenteriae. We suggest that highly expressed genes cannot routinely use GroEL for error control so that codon usage has evolved to provide complementary error limitation. These findings provide independent evidence for a role of misfolding in shaping gene evolution and highlight the need to co-characterize adaptations in cis and trans to unravel the workings of integrated molecular systems.
Collapse
Affiliation(s)
- Tobias Warnecke
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | | |
Collapse
|
19
|
Pechmann S, Vendruscolo M. Derivation of a solubility condition for proteins from an analysis of the competition between folding and aggregation. MOLECULAR BIOSYSTEMS 2010; 6:2490-7. [DOI: 10.1039/c005160h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
20
|
Tokuriki N, Tawfik DS. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 2009; 459:668-73. [PMID: 19494908 DOI: 10.1038/nature08009] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 03/20/2009] [Indexed: 01/17/2023]
Abstract
Most protein mutations, and mutations that alter protein functions in particular, undermine stability and are therefore deleterious. Chaperones, or heat-shock proteins, are often implicated in buffering mutations, and could thus facilitate the acquisition of neutral genetic diversity and the rate of adaptation. We examined the ability of the Escherichia coli GroEL/GroES chaperonins to buffer destabilizing and adaptive mutations. Here we show that mutational drifts performed in vitro with four different enzymes indicated that GroEL/GroES overexpression doubled the number of accumulating mutations, and promoted the folding of enzyme variants carrying mutations in the protein core and/or mutations with higher destabilizing effects (destabilization energies of >3.5 kcal mol(-)(1), on average, versus approximately 1 kcal mol(-)(1) in the absence of GroEL/GroES). The divergence of modified enzymatic specificity occurred much faster under GroEL/GroES overexpression, in terms of the number of adapted variants (>or=2-fold) and their improved specificity and activity (>or=10-fold). These results indicate that protein stability is a major constraint in protein evolution, and buffering mechanisms such as chaperonins are key in alleviating this constraint.
Collapse
Affiliation(s)
- Nobuhiko Tokuriki
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
21
|
Patra AK, Udgaonkar JB. GroEL Can Unfold Late Intermediates Populated on the Folding Pathways of Monellin. J Mol Biol 2009; 389:759-75. [DOI: 10.1016/j.jmb.2009.04.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/10/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
|
22
|
Masters M, Blakely G, Coulson A, McLennan N, Yerko V, Acord J. Protein folding in Escherichia coli: the chaperonin GroE and its substrates. Res Microbiol 2009; 160:267-77. [PMID: 19393741 DOI: 10.1016/j.resmic.2009.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/02/2009] [Accepted: 04/10/2009] [Indexed: 10/20/2022]
Abstract
A brief summary of the role of DnaK and GroE chaperones in protein folding precedes a discussion of the role of GroE in Escherichia coli. We consider its obligate substrates, the 8 that are both obligate and essential, and the prospects for constructing a mutant that could survive without it. Structural features of GroE-dependent polypeptides are also considered.
Collapse
Affiliation(s)
- Millicent Masters
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Edinburgh EH93JR, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|