1
|
Bondarenko NI, Nassonova ES, Mijanovic O, Glotova AA, Kamyshatskaya OG, Kudryavtsev AA, Masharsky AE, Polev DE, Smirnov AV. Mitochondrial Genome of Vannella croatica (Amoebozoa, Discosea, Vannellida). J Eukaryot Microbiol 2018; 65:820-827. [PMID: 29655313 DOI: 10.1111/jeu.12523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Mitochondrial genome sequence of Vannella croatica (Amoebozoa, Discosea, Vannellida) was obtained using pulse-field gel electrophoretic isolation of the circular mitochondrial DNA, followed by the next-generation sequencing. The mitochondrial DNA of this species has the length of 28,933 bp and contains 12 protein-coding genes, two ribosomal RNAs, and 16 transfer RNAs. Vannella croatica mitochondrial genome is relatively short compared to other known amoebozoan mitochondrial genomes but is rather gene-rich and contains significant number of open reading frames.
Collapse
Affiliation(s)
- Natalya I Bondarenko
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Elena S Nassonova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia.,Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, St. Petersburg, 194064, Russia
| | - Olja Mijanovic
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Anna A Glotova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Oksana G Kamyshatskaya
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| | - Alexander A Kudryavtsev
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia.,Laboratory of Parasitic Worms and Protistology, Zoological Institute RAS, Universitetskaya nab. 1, St. Petersburg, 199034, Russia
| | - Alexey E Masharsky
- Core Facility Center "Development of Molecular and Cell Technologies", St. Petersburg State University, Botanicheskaya str. 17, Stary Peterhof, St. Petersburg, 198504, Russia
| | - Dmitrii E Polev
- Core Facility Center "Development of Molecular and Cell Technologies", St. Petersburg State University, Botanicheskaya str. 17, Stary Peterhof, St. Petersburg, 198504, Russia
| | - Alexey V Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
| |
Collapse
|
2
|
Höner Zu Siederdissen C, Hofacker IL, Stadler PF. Product Grammars for Alignment and Folding. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:507-519. [PMID: 26357262 DOI: 10.1109/tcbb.2014.2326155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We develop a theory of algebraic operations over linear and context-free grammars that makes it possible to combine simple "atomic" grammars operating on single sequences into complex, multi-dimensional grammars. We demonstrate the utility of this framework by constructing the search spaces of complex alignment problems on multiple input sequences explicitly as algebraic expressions of very simple one-dimensional grammars. In particular, we provide a fully worked frameshift-aware, semiglobal DNA-protein alignment algorithm whose grammar is composed of products of small, atomic grammars. The compiler accompanying our theory makes it easy to experiment with the combination of multiple grammars and different operations. Composite grammars can be written out in L(A)T(E)X for documentation and as a guide to implementation of dynamic programming algorithms. An embedding in Haskell as a domain-specific language makes the theory directly accessible to writing and using grammar products without the detour of an external compiler. Software and supplemental files available here: http://www.bioinf. uni-leipzig.de/Software/gramprod/.
Collapse
|
3
|
|
4
|
Kolesnikov AA, Gerasimov ES. Diversity of mitochondrial genome organization. BIOCHEMISTRY (MOSCOW) 2013; 77:1424-35. [PMID: 23379519 DOI: 10.1134/s0006297912130020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we discuss types of mitochondrial genome structural organization (architecture), which includes the following characteristic features: size and the shape of DNA molecule, number of encoded genes, presence of cryptogenes, and editing of primary transcripts.
Collapse
Affiliation(s)
- A A Kolesnikov
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | | |
Collapse
|
5
|
Chen C, Frankhouser D, Bundschuh R. Comparison of insertional RNA editing in Myxomycetes. PLoS Comput Biol 2012; 8:e1002400. [PMID: 22383871 PMCID: PMC3285571 DOI: 10.1371/journal.pcbi.1002400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 01/11/2012] [Indexed: 11/23/2022] Open
Abstract
RNA editing describes the process in which individual or short stretches of nucleotides in a messenger or structural RNA are inserted, deleted, or substituted. A high level of RNA editing has been observed in the mitochondrial genome of Physarum polycephalum. The most frequent editing type in Physarum is the insertion of individual Cs. RNA editing is extremely accurate in Physarum; however, little is known about its mechanism. Here, we demonstrate how analyzing two organisms from the Myxomycetes, namely Physarum polycephalum and Didymium iridis, allows us to test hypotheses about the editing mechanism that can not be tested from a single organism alone. First, we show that using the recently determined full transcriptome information of Physarum dramatically improves the accuracy of computational editing site prediction in Didymium. We use this approach to predict genes in the mitochondrial genome of Didymium and identify six new edited genes as well as one new gene that appears unedited. Next we investigate sequence conservation in the vicinity of editing sites between the two organisms in order to identify sites that harbor the information for the location of editing sites based on increased conservation. Our results imply that the information contained within only nine or ten nucleotides on either side of the editing site (a distance previously suggested through experiments) is not enough to locate the editing sites. Finally, we show that the codon position bias in C insertional RNA editing of these two organisms is correlated with the selection pressure on the respective genes thereby directly testing an evolutionary theory on the origin of this codon bias. Beyond revealing interesting properties of insertional RNA editing in Myxomycetes, our work suggests possible approaches to be used when finding sequence motifs for any biological process fails. RNA is an important biomolecule that is deeply involved in all aspects of molecular biology, such as protein production, gene regulation, and viral replication. However, many significant aspects such as the mechanism of RNA editing are not well understood. RNA editing is the process in which an organism's RNA is modified through the insertion, deletion, or substitution of single or short stretches of nucleotides. The slime mold Physarum polycephalum is a model organism for the study of RNA editing; however, hardly anything is known about its editing machinery. We show that the combination of two organisms (Physarum polycephalum and Didymium iridis) can provide a better understanding of insertional RNA editing than one organism alone. We predict several new edited genes in Didymium. By comparing the sequences of the two organisms in the vicinity of the editing sites we establish minimal requirements for the location of the information by which these editing sites are recognized. Lastly, we directly verify a theory for one of the most striking features of the editing sites, namely their codon bias.
Collapse
Affiliation(s)
- Cai Chen
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - David Frankhouser
- Department of Physics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ralf Bundschuh
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Physics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bundschuh R, Altmüller J, Becker C, Nürnberg P, Gott JM. Complete characterization of the edited transcriptome of the mitochondrion of Physarum polycephalum using deep sequencing of RNA. Nucleic Acids Res 2011; 39:6044-55. [PMID: 21478163 PMCID: PMC3152335 DOI: 10.1093/nar/gkr180] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNAs transcribed from the mitochondrial genome of Physarum polycephalum are heavily edited. The most prevalent editing event is the insertion of single Cs, with Us and dinucleotides also added at specific sites. The existence of insertional editing makes gene identification difficult and localization of editing sites has relied upon characterization of individual cDNAs. We have now determined the complete mitochondrial transcriptome of Physarum using Illumina deep sequencing of purified mitochondrial RNA. We report the first instances of A and G insertions and sites of partial and extragenic editing in Physarum mitochondrial RNAs, as well as an additional 772 C, U and dinucleotide insertions. The notable lack of antisense RNAs in our non-size selected, directional library argues strongly against an RNA-guided editing mechanism. Also of interest are our findings that sites of C to U changes are unedited at a significantly higher frequency than insertional editing sites and that substitutional editing of neighboring sites appears to be coupled. Finally, in addition to the characterization of RNAs from 17 predicted genes, our data identified nine new mitochondrial genes, four of which encode proteins that do not resemble other proteins in the database. Curiously, one of the latter mRNAs contains no editing sites.
Collapse
Affiliation(s)
- R Bundschuh
- Department of Physics, Department of Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
7
|
Chateigner-Boutin AL, Small I. Organellar RNA editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:493-506. [PMID: 21957039 DOI: 10.1002/wrna.72] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA editing is a term used for a number of mechanistically different processes that alter the nucleotide sequence of RNA molecules to differ from the gene sequence. RNA editing occurs in a wide variety of organisms and is particularly frequent in organelle transcripts of eukaryotes. The discontiguous phylogenetic distribution of mRNA editing, the mechanistic differences observed in different organisms, and the nonhomologous editing machinery described in different taxonomic groups all suggest that RNA editing has appeared independently several times. This raises questions about the selection pressures acting to maintain editing that are yet to be completely resolved. Editing tends to be frequent in organisms with atypical organelle genomes and acts to correct the effect of DNA mutations that would otherwise compromise the synthesis of functional proteins. Additional functions of editing in generating protein diversity or regulating gene expression have been proposed but so far lack widespread experimental evidence, at least in organelles.
Collapse
|
8
|
Arneth BM. Sequence variability and sequence evolution: an explanation of molecular polymorphisms and why many molecular structures can be preserved although they are not predominant. DNA Cell Biol 2010; 29:571-6. [PMID: 20629558 DOI: 10.1089/dna.2009.0942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The existence of many processes that regulate RNA expression poses a challenge to the idea that the cell is the culmination of a highly efficient interplay of individual proteins, each with specific, highly specialized functions. It will be demonstrated here the extent to which the cell may undergo evolutionary processes that also occur in the macrocosmos, specifically with reference to the rules of mutation and preservation. These molecular evolutionary processes could facilitate a better understanding of the development of molecular structures and the functioning of the cell and could give an explanation of the molecular polymorphisms and also explain why many molecular structures can be preserved although they are not predominant.
Collapse
Affiliation(s)
- Borros M Arneth
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
9
|
Hendrickson PG, Silliker ME. RNA editing is absent in a single mitochondrial gene of Didymium iridis. Mycologia 2010; 102:1288-94. [PMID: 20943545 DOI: 10.3852/10-019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An open reading frame (ORF) was found in the mitochondrial genome of the Pan2-16 strain of Didymium iridis that showed high similarity to the NADH dehydrogenase subunit 3 (nad3) gene in other organisms. So far all other typical mitochondrial genes identified in this organism require RNA editing to generate ORFs capable of directing protein synthesis. The D. iridis sequence was compared to the putative nad3 gene in the related myxomycete Physarum polycephalum, which would require editing. Based on this comparison, editing sites could be predicted for the P. polycelphalum gene that would result in the synthesis of a highly conserved ND3 protein between the two organisms. To determine the editing status of the nad3 gene in other D. iridis strains, PCR was used to amplify this region from eight other independent isolates of the A1 Central American interbreeding series. In each case a 378 base pair ORF was detected by PCR amplification and sequencing. Three patterns of sequence variation were observed; however all base substitutions were in the third codon position and silent with respect to the amino acids encoded. The distribution of the sequence variants was mapped geographically. The requirement for RNA editing in all other typical mitochondrial genes of D. iridis and P. polycephalum and the presence of RNA editing in the nad3 gene of P. polycephalum suggest that the D. iridis nad3 gene might have been edited at one time. We propose that the D. iridis nad3 gene may have lost the requirement for RNA editing by reverse transcription of an edited transcript that subsequently was inserted into the genome.
Collapse
Affiliation(s)
- Peter G Hendrickson
- Children's Memorial Research Center, Immunology Department, 2300 Children's Plaza, Mailstop 212, Chicago, Illinois 60614, USA
| | | |
Collapse
|
10
|
Traphagen SJ, Dimarco MJ, Silliker ME. RNA editing of 10 Didymium iridis mitochondrial genes and comparison with the homologous genes in Physarum polycephalum. RNA (NEW YORK, N.Y.) 2010; 16:828-838. [PMID: 20159952 PMCID: PMC2844629 DOI: 10.1261/rna.1989310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
Regions of the Didymium iridis mitochondrial genome were identified with similarity to typical mitochondrial genes; however, these regions contained numerous stop codons. We used RT-PCR and DNA sequencing to determine whether, through RNA editing, these regions were transcribed into mRNAs that could encode functional proteins. Ten putative gene regions were examined: atp1, atp6, atp8, atp9, cox1, cox2, cytb, nad4L, nad6, and nad7. The cDNA sequences of each gene could encode a functional mitochondrial protein that was highly conserved compared with homologous genes. The type of editing events and editing sequence features were very similar to those observed in the homologous genes of Physarum polycephalum, though the actual editing locations showed a variable degree of conservation. Edited sites were compared with encoded sites in D. iridis and P. polycephalum for all 10 genes. Edited sequence for a portion of the cox1 gene was available for six myxomycetes, which, when compared, showed a high degree of conservation at the protein level. Different types of editing events showed varying degrees of site conservation with C-to-U base changes being the least conserved. Several aspects of single C insertion editing events led to the preferential creation of hydrophobic amino acid codons that may help to minimize adverse effects on the resulting protein structure.
Collapse
Affiliation(s)
- Stephen J Traphagen
- The English High School, Boston Public Schools, Boston, Massachusetts 02130, USA
| | | | | |
Collapse
|
11
|
Gott JM, Somerlot BH, Gray MW. Two forms of RNA editing are required for tRNA maturation in Physarum mitochondria. RNA (NEW YORK, N.Y.) 2010; 16:482-8. [PMID: 20106952 PMCID: PMC2822913 DOI: 10.1261/rna.1958810] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mitochondrial genome of Physarum polycephalum encodes five tRNAs, four of which are edited by nucleotide insertion. Two of these tRNAs, tRNA(met1) and tRNA(met2), contain predicted mismatches at the beginning (proximal end) of the acceptor stem. In addition, the putative 5' end of tRNA(met2) overlaps the 3' end of a small, abundant, noncoding RNA, which we term ppoRNA. These anomalies led us to hypothesize that these two Physarum mitochondrial tRNAs undergo additional editing events. Here, we show that tRNA(met1) and tRNA(met2) each has a nonencoded G at its 5' end. In contrast to the other nucleotides that are added to Physarum mitochondrial RNAs, these extra G residues are likely added post-transcriptionally based on (1) the absence of added G in precursor transcripts containing inserted C and AA residues, (2) the presence of potential intermediates characteristic of 5' replacement editing, and (3) preferential incorporation of GTP into tRNA molecules under conditions that do not support transcription. This is the first report of both post-transcriptional nucleotide insertions and the addition of single Gs in P. polycephalum mitochondrial transcripts. We postulate that tRNA(met1) and tRNA(met2) are acted upon by an activity similar to that present in the mitochondria of certain other amoebozoons and chytrid fungi, suggesting that enzymes that repair the 5' end of tRNAs may be widespread.
Collapse
Affiliation(s)
- Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
12
|
Hendrickson PG, Silliker ME. RNA editing in six mitochondrial ribosomal protein genes of Didymium iridis. Curr Genet 2010; 56:203-13. [PMID: 20169440 DOI: 10.1007/s00294-010-0292-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/30/2022]
Abstract
Similarity searches with Didymium iridis mitochondrial genomic DNA identified six possible ribosomal protein-coding regions, however, each region contained stop codons that would need to be removed by RNA editing to produce functional transcripts. RT-PCR was used to amplify these regions from total RNA for cloning and sequencing. Six functional transcripts were verified for the following ribosomal protein genes: rpS12, rpS7, rpL2, rpS19, rpS3, and rpL16. The editing events observed, such as single C and U nucleotide insertions and a dinucleotide insertion, were consistent with previously observed editing patterns seen in D. iridis. Additionally, a new form of insertional editing, a single A insertion, was observed in a conserved region of the rpL16 gene. While the majority of codons created by editing specify hydrophobic amino acids, a greater proportion of the codons created in these hydrophilic ribosomal proteins called for positively charged amino acids in comparison to the previously characterized hydrophobic respiratory protein genes. This first report of edited soluble mitochondrial ribosomal proteins in myxomycetes expands upon the RNA editing patterns previously seen; there was: a greater proportion of created codons specifying positively charged amino acids, a shift in the codon position edited, and the insertion of single A nucleotides.
Collapse
Affiliation(s)
- Peter G Hendrickson
- Immunology Department, Children's Memorial Research Center, Chicago, IL 60614, USA
| | | |
Collapse
|
13
|
Rhee AC, Somerlot BH, Parimi N, Gott JM. Distinct roles for sequences upstream of and downstream from Physarum editing sites. RNA (NEW YORK, N.Y.) 2009; 15:1753-1765. [PMID: 19605532 PMCID: PMC2743052 DOI: 10.1261/rna.1668309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 06/06/2009] [Indexed: 05/28/2023]
Abstract
RNAs in the mitochondria of Physarum polycephalum contain nonencoded nucleotides that are added during RNA synthesis. Essentially all steady-state RNAs are accurately and fully edited, yet the signals guiding these precise nucleotide insertions are presently unknown. To localize the regions of the template that are required for editing, we constructed a series of chimeric templates that substitute varying amounts of DNA either upstream of or downstream from C insertion sites. Remarkably, all sequences necessary for C addition are contained within approximately 9 base pairs on either side of the insertion site. In addition, our data strongly suggest that sequences within this critical region affect different steps in the editing reaction. Template alterations upstream of an editing site influence nucleotide selection and/or insertion, while downstream changes affect editing site recognition and templated extension from the added, unpaired nucleotide. The data presented here provide the first evidence that individual regions of the DNA template play discrete mechanistic roles and represent a crucial initial step toward defining the source of the editing specificity in Physarum mitochondria. In addition, these findings have mechanistic implications regarding the potential involvement of the mitochondrial RNA polymerase in the editing reaction.
Collapse
Affiliation(s)
- Amy C Rhee
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|