1
|
Yan H, Hu Z, Thomas GWC, Edwards SV, Sackton TB, Liu JS. PhyloAcc-GT: A Bayesian Method for Inferring Patterns of Substitution Rate Shifts on Targeted Lineages Accounting for Gene Tree Discordance. Mol Biol Evol 2023; 40:msad195. [PMID: 37665177 PMCID: PMC10540510 DOI: 10.1093/molbev/msad195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023] Open
Abstract
An important goal of evolutionary genomics is to identify genomic regions whose substitution rates differ among lineages. For example, genomic regions experiencing accelerated molecular evolution in some lineages may provide insight into links between genotype and phenotype. Several comparative genomics methods have been developed to identify genomic accelerations between species, including a Bayesian method called PhyloAcc, which models shifts in substitution rate in multiple target lineages on a phylogeny. However, few methods consider the possibility of discordance between the trees of individual loci and the species tree due to incomplete lineage sorting, which might cause false positives. Here, we present PhyloAcc-GT, which extends PhyloAcc by modeling gene tree heterogeneity. Given a species tree, we adopt the multispecies coalescent model as the prior distribution of gene trees, use Markov chain Monte Carlo (MCMC) for inference, and design novel MCMC moves to sample gene trees efficiently. Through extensive simulations, we show that PhyloAcc-GT outperforms PhyloAcc and other methods in identifying target lineage-specific accelerations and detecting complex patterns of rate shifts, and is robust to specification of population size parameters. PhyloAcc-GT is usually more conservative than PhyloAcc in calling convergent rate shifts because it identifies more accelerations on ancestral than on terminal branches. We apply PhyloAcc-GT to two examples of convergent evolution: flightlessness in ratites and marine mammal adaptations, and show that PhyloAcc-GT is a robust tool to identify shifts in substitution rate associated with specific target lineages while accounting for incomplete lineage sorting.
Collapse
Affiliation(s)
- Han Yan
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Zhirui Hu
- Department of Statistics, Harvard University, Cambridge, MA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | | | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Jun S Liu
- Department of Statistics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
2
|
González Silos R, Fischer C, Lorenzo Bermejo J. NGS allele counts versus called genotypes for testing genetic association. Comput Struct Biotechnol J 2022; 20:3729-3733. [PMID: 35891781 PMCID: PMC9294184 DOI: 10.1016/j.csbj.2022.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
RNA sequence data are commonly summarized as read counts. By contrast, so far there is no alternative to genotype calling for investigating the relationship between genetic variants determined by next-generation sequencing (NGS) and a phenotype of interest. Here we propose and evaluate the direct analysis of allele counts for genetic association tests. Specifically, we assess the potential advantage of the ratio of alternative allele counts to the total number of reads aligned at a specific position of the genome (coverage) over called genotypes. We simulated association studies based on NGS data from HapMap individuals. Genotype quality scores and allele counts were simulated using NGS data from the Personal Genome Project. Real data from the 1000 Genomes Project was also used to compare the two competing approaches. The average proportions of probability values lower or equal to 0.05 amounted to 0.0496 for called genotypes and 0.0485 for the ratio of alternative allele counts to coverage in the null scenario, and to 0.69 for called genotypes and 0.75 for the ratio of alternative allele counts to coverage in the alternative scenario (9% power increase). The advantage in statistical power of the novel approach increased with decreasing coverage, with decreasing genotype quality and with decreasing allele frequency – 124% power increase for variants with a minor allele frequency lower than 0.05. We provide computer code in R to implement the novel approach, which does not preclude the use of complementary data quality filters before or after identification of the most promising association signals. Author summary Genetic association tests usually rely on called genotypes. We postulate here that the direct analysis of allele counts from sequence data improves the quality of statistical inference. To evaluate this hypothesis, we investigate simulated and real data using distinct statistical approaches. We demonstrate that association tests based on allele counts rather than called genotypes achieve higher statistical power with controlled type I error rates.
Collapse
Affiliation(s)
| | - Christine Fischer
- Institute of Human Genetics, University of Heidelberg, 69120, Germany
| | | |
Collapse
|
3
|
Halabi K, Karin EL, Guéguen L, Mayrose I. A Codon Model for Associating Phenotypic Traits with Altered Selective Patterns of Sequence Evolution. Syst Biol 2020; 70:608-622. [PMID: 33252676 DOI: 10.1093/sysbio/syaa087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023] Open
Abstract
Detecting the signature of selection in coding sequences and associating it with shifts in phenotypic states can unveil genes underlying complex traits. Of the various signatures of selection exhibited at the molecular level, changes in the pattern of selection at protein-coding genes have been of main interest. To this end, phylogenetic branch-site codon models are routinely applied to detect changes in selective patterns along specific branches of the phylogeny. Many of these methods rely on a prespecified partition of the phylogeny to branch categories, thus treating the course of trait evolution as fully resolved and assuming that phenotypic transitions have occurred only at speciation events. Here, we present TraitRELAX, a new phylogenetic model that alleviates these strong assumptions by explicitly accounting for the uncertainty in the evolution of both trait and coding sequences. This joint statistical framework enables the detection of changes in selection intensity upon repeated trait transitions. We evaluated the performance of TraitRELAX using simulations and then applied it to two case studies. Using TraitRELAX, we found an intensification of selection in the primate SEMG2 gene in polygynandrous species compared to species of other mating forms, as well as changes in the intensity of purifying selection operating on sixteen bacterial genes upon transitioning from a free-living to an endosymbiotic lifestyle.[Evolutionary selection; intensification; $\gamma $-proteobacteria; genotype-phenotype; relaxation; SEMG2.].
Collapse
Affiliation(s)
- Keren Halabi
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eli Levy Karin
- Quantitative and Computational Biology, Max-Planck institute for biophysical Chemistry, Göttingen 37077, Germany
| | - Laurent Guéguen
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, F-69622 Villeurbanne, France.,Swedish Collegium for Advanced Study, Thunbergsvägen 2 752 38 Uppsala, Sweden
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
4
|
Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res 2020; 30:553-565. [PMID: 32269134 PMCID: PMC7197477 DOI: 10.1101/gr.255752.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.
Collapse
Affiliation(s)
- Leeban Yusuf
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Matthew C Heatley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Joseph P G Palmer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Organismal and Evolutionary Biology Research Programme, Viikinkaari 9 (PL 56), University of Helsinki, Helsinki, FI-00014, Finland
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Department of Animal Behaviour, Bielefeld University, Bielefeld, DE-33501, Germany
| |
Collapse
|
5
|
Muntané G, Farré X, Rodríguez JA, Pegueroles C, Hughes DA, de Magalhães JP, Gabaldón T, Navarro A. Biological Processes Modulating Longevity across Primates: A Phylogenetic Genome-Phenome Analysis. Mol Biol Evol 2019; 35:1990-2004. [PMID: 29788292 PMCID: PMC6063263 DOI: 10.1093/molbev/msy105] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging is a complex process affecting different species and individuals in different ways. Comparing genetic variation across species with their aging phenotypes will help understanding the molecular basis of aging and longevity. Although most studies on aging have so far focused on short-lived model organisms, recent comparisons of genomic, transcriptomic, and metabolomic data across lineages with different lifespans are unveiling molecular signatures associated with longevity. Here, we examine the relationship between genomic variation and maximum lifespan across primate species. We used two different approaches. First, we searched for parallel amino-acid mutations that co-occur with increases in longevity across the primate linage. Twenty-five such amino-acid variants were identified, several of which have been previously reported by studies with different experimental setups and in different model organisms. The genes harboring these mutations are mainly enriched in functional categories such as wound healing, blood coagulation, and cardiovascular disorders. We demonstrate that these pathways are highly enriched for pleiotropic effects, as predicted by the antagonistic pleiotropy theory of aging. A second approach was focused on changes in rates of protein evolution across the primate phylogeny. Using the phylogenetic generalized least squares, we show that some genes exhibit strong correlations between their evolutionary rates and longevity-associated traits. These include genes in the Sphingosine 1-phosphate pathway, PI3K signaling, and the Thrombin/protease-activated receptor pathway, among other cardiovascular processes. Together, these results shed light into human senescence patterns and underscore the power of comparative genomics to identify pathways related to aging and longevity.
Collapse
Affiliation(s)
- Gerard Muntané
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Hospital Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, Biomedical Network Research Centre on Mental Health (CIBERSAM), Reus, Spain
| | - Xavier Farré
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Juan Antonio Rodríguez
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cinta Pegueroles
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - David A Hughes
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
6
|
Isshiki M, Ishida T. Molecular evolution of the semenogelin 1 and 2 and mating system in gibbons. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:364-369. [PMID: 30575018 DOI: 10.1002/ajpa.23748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/17/2018] [Accepted: 10/20/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Semenogelin 1 and 2 (SEMG1 and SEMG2) are known as semen coagulating proteins in primates with a repetitive structure of 60-amino acids. The number of repeats varies among species and is hypothesized to be related to the level of primate sperm competition. Gibbons until recently were thought to be monogamous primates, but it is now known that gibbon social structure is flexible. Thus, hypotheses of the relationship between the SEMGs evolution and mating systems were tested. MATERIALS AND METHODS The sequences of the exon 2 of the SEMG1 and SEMG2 were obtained from 50 captive gibbons comprising six species belonging to three genera (Hylobates, Symphalangus, and Nomascus). Then we quantified the levels of polymorphism and estimated rates of protein evolution by calculating d N /d S ratio. RESULTS Several mutations that create a premature stop codon in the SEMG1 and a reduction in the repeats of the SEMG2 in the genus Hylobates were observed and may alter the coding properties for these proteins. We also found different level of nucleotide diversity in each gene and between genera. Strikingly, in Nomascus leucogenys we discovered a high d N /d S ratio in the SEMG1 and SEMG2. The Nomascus SEMG2 also showed significantly lower nucleotide diversity than the other two genera. DISCUSSION These results are consistent with the presence of a strong positive selection in the Nomascus lineage even if the exact selective forces acting on these genes are not yet conclusively known. We were not able to demonstrate, among gibbons, unambiguous relationships between the SEMGs evolution and mating systems.
Collapse
Affiliation(s)
- Mariko Isshiki
- Unit of Human Biology and Genetics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| | - Takafumi Ishida
- Unit of Human Biology and Genetics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Levy Karin E, Wicke S, Pupko T, Mayrose I. An Integrated Model of Phenotypic Trait Changes and Site-Specific Sequence Evolution. Syst Biol 2017; 66:917-933. [DOI: 10.1093/sysbio/syx032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/24/2017] [Indexed: 02/05/2023] Open
|
8
|
Vogt G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J Biosci 2015; 40:159-204. [PMID: 25740150 DOI: 10.1007/s12038-015-9506-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article reviews the production of different phenotypes from the same genotype in the same environment by stochastic cellular events, nonlinear mechanisms during patterning and morphogenesis, and probabilistic self-reinforcing circuitries in the adult life. These aspects of phenotypic variation are summarized under the term 'stochastic developmental variation' (SDV) in the following. In the past, SDV has been viewed primarily as a nuisance, impairing laboratory experiments, pharmaceutical testing, and true-to-type breeding. This article also emphasizes the positive biological effects of SDV and discusses implications for genotype-to-phenotype mapping, biological individuation, ecology, evolution, and applied biology. There is strong evidence from experiments with genetically identical organisms performed in narrowly standardized laboratory set-ups that SDV is a source of phenotypic variation in its own right aside from genetic variation and environmental variation. It is obviously mediated by molecular and higher-order epigenetic mechanisms. Comparison of SDV in animals, plants, fungi, protists, bacteria, archaeans, and viruses suggests that it is a ubiquitous and phylogenetically old phenomenon. In animals, it is usually smallest for morphometric traits and highest for life history traits and behaviour. SDV is thought to contribute to phenotypic diversity in all populations but is particularly relevant for asexually reproducing and genetically impoverished populations, where it generates individuality despite genetic uniformity. In each generation, SDV produces a range of phenotypes around a well-adapted target phenotype, which is interpreted as a bet-hedging strategy to cope with the unpredictability of dynamic environments. At least some manifestations of SDV are heritable, adaptable, selectable, and evolvable, and therefore, SDV may be seen as a hitherto overlooked evolution factor. SDV is also relevant for husbandry, agriculture, and medicine because most pathogens are asexuals that exploit this third source of phenotypic variation to modify infectivity and resistance to antibiotics. Since SDV affects all types of organisms and almost all aspects of life, it urgently requires more intense research and a better integration into biological thinking.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, D-69120, Heidelberg, Germany,
| |
Collapse
|
9
|
Codon-based phylogenetics introduces novel flagellar gene markers to oomycete systematics. Mol Phylogenet Evol 2014; 79:279-91. [DOI: 10.1016/j.ympev.2014.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/01/2014] [Accepted: 04/07/2014] [Indexed: 11/24/2022]
|
10
|
Finseth FR, Bondra E, Harrison RG. Selective Constraint Dominates the Evolution of Genes Expressed in a Novel Reproductive Gland. Mol Biol Evol 2014; 31:3266-81. [DOI: 10.1093/molbev/msu259] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Monestier O, Servin B, Auclair S, Bourquard T, Poupon A, Pascal G, Fabre S. Evolutionary origin of bone morphogenetic protein 15 and growth and differentiation factor 9 and differential selective pressure between mono- and polyovulating species. Biol Reprod 2014; 91:83. [PMID: 25100713 DOI: 10.1095/biolreprod.114.119735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bone morphogenetic protein 15 (BMP15) and growth and differentiation factor 9 (GDF9) are TGFbeta-like oocyte-derived growth factors involved in ovarian folliculogenesis as critical regulators of many granulosa cell processes and ovulation rate. Ovarian phenotypic effect caused by alterations in BMP15 and GDF9 genes appears to differ between species and may be relevant to their mono- or polyovulating status. Through phylogenetic analysis we recently showed that these two paralogous genes are strongly divergent and in rapid evolution as compared to other members of the TGFbeta superfamily. Here, we evaluate the amino acid substitution rates of a set of proteins implicated in the ovarian function, including BMP15 and GDF9, with special attention to the mono- or polyovulating status of the species. Among a panel of mono- and polyovulating mammals, we demonstrate a better conservation of some areas in BMP15 and GDF9 within mono-ovulating species. Homology modeling of BMP15 and GDF9 homodimer and heterodimer 3-D structures was suggestive that these areas may be involved in dimer formation and stability. A phylogenetic study of BMP15/GDF9-related proteins reveals that these two genes diverged from the same ancestral gene along with BMP3 and GDF10, two other paralogous genes. A substitution rate analysis based on this phylogenetic tree leads to the hypothesis of an acquisition of BMP15/GDF9-specific functions in ovarian folliculogenesis in mammals. We propose that high variations observed in specific areas of BMP15 and GDF9 in polyovulating species change the equilibrium between homodimers and heterodimers, modifying the biological activity and thus allowing polyovulation to occur.
Collapse
Affiliation(s)
- Olivier Monestier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École Nationale Supérieure Agronomique de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École nationale vétérinaire de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Toulouse, France
| | - Bertrand Servin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École Nationale Supérieure Agronomique de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École nationale vétérinaire de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Toulouse, France
| | - Sylvain Auclair
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Thomas Bourquard
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Anne Poupon
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France Université François Rabelais de Tours, Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Géraldine Pascal
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École Nationale Supérieure Agronomique de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École nationale vétérinaire de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Toulouse, France
| | - Stéphane Fabre
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École Nationale Supérieure Agronomique de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Castanet-Tolosan, France Université de Toulouse, Institut National Polytechnique de Toulouse, École nationale vétérinaire de Toulouse, Unité Mixte de Recherche 1388 Génétique, Physiologie et Systèmes d'Elevage, Toulouse, France
| |
Collapse
|
12
|
Franco-Duarte R, Mendes I, Umek L, Drumonde-Neves J, Zupan B, Schuller D. Computational models reveal genotype-phenotype associations in Saccharomyces cerevisiae. Yeast 2014; 31:265-77. [PMID: 24752995 DOI: 10.1002/yea.3016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/11/2022] Open
Abstract
Genome sequencing is essential to understand individual variation and to study the mechanisms that explain relations between genotype and phenotype. The accumulated knowledge from large-scale genome sequencing projects of Saccharomyces cerevisiae isolates is being used to study the mechanisms that explain such relations. Our objective was to undertake genetic characterization of 172 S. cerevisiae strains from different geographical origins and technological groups, using 11 polymorphic microsatellites, and computationally relate these data with the results of 30 phenotypic tests. Genetic characterization revealed 280 alleles, with the microsatellite ScAAT1 contributing most to intrastrain variability, together with alleles 20, 9 and 16 from the microsatellites ScAAT4, ScAAT5 and ScAAT6. These microsatellite allelic profiles are characteristic for both the phenotype and origin of yeast strains. We confirm the strength of these associations by construction and cross-validation of computational models that can predict the technological application and origin of a strain from the microsatellite allelic profile. Associations between microsatellites and specific phenotypes were scored using information gain ratios, and significant findings were confirmed by permutation tests and estimation of false discovery rates. The phenotypes associated with higher number of alleles were the capacity to resist to sulphur dioxide (tested by the capacity to grow in the presence of potassium bisulphite) and the presence of galactosidase activity. Our study demonstrates the utility of computational modelling to estimate a strain technological group and phenotype from microsatellite allelic combinations as tools for preliminary yeast strain selection.
Collapse
Affiliation(s)
- Ricardo Franco-Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
13
|
Enard W. Comparative genomics of brain size evolution. Front Hum Neurosci 2014; 8:345. [PMID: 24904382 PMCID: PMC4033227 DOI: 10.3389/fnhum.2014.00345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/06/2014] [Indexed: 01/12/2023] Open
Abstract
Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to the limited number of species, the presumably complex genetics of brain size evolution and the large search space of mammalian genomes. Hence, it is crucial to add functional information, for example by limiting the search space to genes and regulatory elements known to play a role in the relevant cell types during brain development. Similarly, it is crucial to experimentally follow up on hypotheses generated by such a comparative approach. Recent progress in understanding the molecular and cellular mechanisms of mammalian brain development, in genome sequencing and in genome editing, promises to make a close integration of evolutionary and experimental methods a fruitful approach to better understand the genetics of mammalian brain size evolution.
Collapse
Affiliation(s)
- Wolfgang Enard
- Department of Biology II, Ludwig Maximilian University MunichMunich, Germany
| |
Collapse
|
14
|
Scombroid Fishes Provide Novel Insights into the Trait/Rate Associations of Molecular Evolution. J Mol Evol 2014; 78:338-48. [DOI: 10.1007/s00239-014-9621-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/19/2014] [Indexed: 12/25/2022]
|
15
|
Wong A. Covariance between Testes Size and Substitution Rates in Primates. Mol Biol Evol 2014; 31:1432-6. [DOI: 10.1093/molbev/msu091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
16
|
Montgomery SH, Mundy NI, Barton RA. ASPM and mammalian brain evolution: a case study in the difficulty in making macroevolutionary inferences about gene-phenotype associations. Proc Biol Sci 2014; 281:20131743. [PMID: 24452019 DOI: 10.1098/rspb.2013.1743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Stephen H Montgomery
- Department of Genetics, Evolution and Environment, University College London, , London, UK, Department of Zoology, University of Cambridge, , Cambridge, UK, Department of Anthropology, University of Durham, , Durham, UK
| | | | | |
Collapse
|
17
|
O’Connor TD, Mundy NI. Evolutionary Modeling of Genotype-Phenotype Associations, and Application to Primate Coding and Non-coding mtDNA Rate Variation. Evol Bioinform Online 2013; 9:301-16. [PMID: 23926418 PMCID: PMC3733722 DOI: 10.4137/ebo.s11600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Variation in substitution rates across a phylogeny can be indicative of shifts in the evolutionary dynamics of a protein or non-protein coding regions. One way to understand these signals is to seek the phenotypic correlates of rate variation. Here, we extended a previously published likelihood method designed to detect evolutionary associations between genotypic evolutionary rate and phenotype over a phylogeny. In simulation with two discrete categories of phenotype, the method has a low false-positive rate and detects greater than 80% of true-positives with a tree length of three or greater and a three-fold or greater change in substitution rate given the phenotype. In addition, we successfully extend the test from two to four phenotype categories and evaluated its performance. We then applied the method to two major hypotheses for rate variation in the mitochondrial genome of primates-longevity and generation time as well as body mass which is correlated with many aspects of life history-using three categories of phenotype through discretization of continuous values. Similar to previous results for mammals, we find that the majority of mitochondrial protein-coding genes show associations consistent with the longevity and body mass predictions and that the predominant signal of association comes from the third codon position. We also found a significant association between maximum lifespan and the evolutionary rate of the control region of the mtDNA. In contrast, 24 protein-coding genes from the nuclear genome do not show a consistent pattern of association, which is inconsistent with the generation time hypothesis. These results show the extended method can robustly identify genotype-phenotype associations up to at least four phenotypic categories, and demonstrate the successful application of the method to study factors affecting neutral evolutionary rate in protein-coding and non-coding loci.
Collapse
Affiliation(s)
- Timothy D. O’Connor
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Nicholas I. Mundy
- Department of Zoology, Downing Street, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
18
|
Good JM, Wiebe V, Albert FW, Burbano HA, Kircher M, Green RE, Halbwax M, André C, Atencia R, Fischer A, Pääbo S. Comparative population genomics of the ejaculate in humans and the great apes. Mol Biol Evol 2013; 30:964-76. [PMID: 23329688 DOI: 10.1093/molbev/mst005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The rapid molecular evolution of reproductive genes is nearly ubiquitous across animals, yet the selective forces and functional targets underlying this divergence remain poorly understood. Humans and closely related species of great apes show strongly divergent mating systems, providing a powerful system to investigate the influence of sperm competition on the evolution of reproductive genes. This is complemented by detailed information on male reproductive biology and unparalleled genomic resources in humans. Here, we have used custom microarrays to capture and sequence 285 genes encoding proteins present in the ejaculate as well as 101 randomly selected control genes in 21 gorillas, 20 chimpanzees, 20 bonobos, and 20 humans. In total, we have generated >25× average genomic coverage per individual for over 1 million target base pairs. Our analyses indicate high levels of evolutionary constraint across much of the ejaculate combined with more rapid evolution of genes involved in immune defense and proteolysis. We do not find evidence for appreciably more positive selection along the lineage leading to bonobos and chimpanzees, although this would be predicted given more intense sperm competition in these species. Rather, the extent of positive and negative selection depended more on the effective population sizes of the species. Thus, general patterns of male reproductive protein evolution among apes and humans depend strongly on gene function but not on inferred differences in the intensity of sperm competition among extant species.
Collapse
Affiliation(s)
- Jeffrey M Good
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Positive Selection and the Evolution of izumo Genes in Mammals. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:958164. [PMID: 22957301 PMCID: PMC3432370 DOI: 10.1155/2012/958164] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/04/2012] [Indexed: 12/13/2022]
Abstract
Most genes linked to male reproductive function have been known to evolve rapidly among species and to show signatures of positive selection. Different male species-specific reproductive strategies have been proposed to underlie positive selection, such as sperm competitive advantage and control over females postmating physiology. However, an underexplored aspect potentially affecting male reproductive gene evolution in mammals is the effect of gene duplications. Here we analyze the molecular evolution of members of the izumo gene family in mammals, a family of four genes mostly expressed in the sperm with known and potential roles in sperm-egg fusion. We confirm a previously reported bout of selection for izumo1 and establish that the bout of selection is restricted to the diversification of species of the superorder Laurasiatheria. None of the izumo genes showed evidence of positive selection in Glires (Rodentia and Lagomorpha), and in the case of the non-testes-specific izumo4, rapid evolution was driven by relaxed selection. We detected evidence of positive selection for izumo3 among Primates. Interestingly, positively selected sites include several serine residues suggesting modifications in protein function and/or localization among Primates. Our results suggest that positive selection is driven by aspects related to species-specific adaptations to fertilization rather than sexual selection.
Collapse
|
20
|
Enard W. Functional primate genomics—leveraging the medical potential. J Mol Med (Berl) 2012; 90:471-80. [DOI: 10.1007/s00109-012-0901-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
|
21
|
Sexual size dimorphism predicts rates of sequence evolution of SPerm Adhesion Molecule 1 (SPAM1, also PH-20) in monkeys, but not in hominoids (apes including humans). Mol Phylogenet Evol 2012; 63:52-63. [DOI: 10.1016/j.ympev.2011.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 12/01/2011] [Accepted: 12/06/2011] [Indexed: 11/21/2022]
|
22
|
Mehmood T, Martens H, Saebø S, Warringer J, Snipen L. Mining for genotype-phenotype relations in Saccharomyces using partial least squares. BMC Bioinformatics 2011; 12:318. [PMID: 21812956 PMCID: PMC3175482 DOI: 10.1186/1471-2105-12-318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 08/03/2011] [Indexed: 11/18/2022] Open
Abstract
Background Multivariate approaches are important due to their versatility and applications in many fields as it provides decisive advantages over univariate analysis in many ways. Genome wide association studies are rapidly emerging, but approaches in hand pay less attention to multivariate relation between genotype and phenotype. We introduce a methodology based on a BLAST approach for extracting information from genomic sequences and Soft- Thresholding Partial Least Squares (ST-PLS) for mapping genotype-phenotype relations. Results Applying this methodology to an extensive data set for the model yeast Saccharomyces cerevisiae, we found that the relationship between genotype-phenotype involves surprisingly few genes in the sense that an overwhelmingly large fraction of the phenotypic variation can be explained by variation in less than 1% of the full gene reference set containing 5791 genes. These phenotype influencing genes were evolving 20% faster than non-influential genes and were unevenly distributed over cellular functions, with strong enrichments in functions such as cellular respiration and transposition. These genes were also enriched with known paralogs, stop codon variations and copy number variations, suggesting that such molecular adjustments have had a disproportionate influence on Saccharomyces yeasts recent adaptation to environmental changes in its ecological niche. Conclusions BLAST and PLS based multivariate approach derived results that adhere to the known yeast phylogeny and gene ontology and thus verify that the methodology extracts a set of fast evolving genes that capture the phylogeny of the yeast strains. The approach is worth pursuing, and future investigations should be made to improve the computations of genotype signals as well as variable selection procedure within the PLS framework.
Collapse
Affiliation(s)
- Tahir Mehmood
- Biostatistics, Department of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Norway.
| | | | | | | | | |
Collapse
|
23
|
Walters JR, Harrison RG. Decoupling of rapid and adaptive evolution among seminal fluid proteins in heliconius butterflies with divergent mating systems. Evolution 2011; 65:2855-71. [PMID: 21967427 DOI: 10.1111/j.1558-5646.2011.01351.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reproductive proteins often diverge rapidly between species. This pattern is frequently attributed to postmating sexual selection. Heliconius butterflies offer a good opportunity to examine this hypothesis by contrasting patterns of reproductive protein evolution between clades with divergent mating systems. Pupal-mating Heliconius females typically mate only once, limiting opportunity for postmating sexual selection. In contrast, adult-mating females remate throughout life. Reproductive protein evolution is therefore predicted to be slower and show little evidence of positive selection in the pupal-mating clade. We examined this prediction by sequencing 18 seminal fluid protein genes from a dozen Heliconius species and a related outgroup. Two proteins exhibited dN/dS > 1, implicating positive selection in the rapid evolution of at least a few Heliconius seminal fluid proteins. However, contrary to predictions, the average evolutionary rate of seminal fluid proteins was greater among pupal-mating Heliconius. Based on these results, we suggest that positive selection and relaxed constraint can generate conflicting patterns of reproductive protein evolution between mating systems. As predicted, some loci may show elevated evolutionary rates in promiscuous taxa relative to monandrous taxa resulting from adaptations to postmating sexual selection. However, when monandry is derived (as in Heliconius), the opposite pattern may result from relaxed selective constraints.
Collapse
Affiliation(s)
- James R Walters
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
24
|
McMahon DP, Hayward A, Kathirithamby J. The first molecular phylogeny of Strepsiptera (Insecta) reveals an early burst of molecular evolution correlated with the transition to endoparasitism. PLoS One 2011; 6:e21206. [PMID: 21738621 PMCID: PMC3125182 DOI: 10.1371/journal.pone.0021206] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/23/2011] [Indexed: 11/18/2022] Open
Abstract
A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role.
Collapse
Affiliation(s)
- Dino P. McMahon
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
25
|
Wong A. The molecular evolution of animal reproductive tract proteins: what have we learned from mating-system comparisons? INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:908735. [PMID: 21755047 PMCID: PMC3132607 DOI: 10.4061/2011/908735] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/23/2011] [Indexed: 01/24/2023]
Abstract
Postcopulatory sexual selection is thought to drive the rapid evolution of reproductive tract genes in many animals. Recently, a number of studies have sought to test this hypothesis by examining the effects of mating system variation on the evolutionary rates of reproductive tract genes. Perhaps surprisingly, there is relatively little evidence that reproductive proteins evolve more rapidly in species subject to strong postcopulatory sexual selection. This emerging trend may suggest that other processes, such as host-pathogen interactions, are the main engines of rapid reproductive gene evolution. I suggest that such a conclusion is as yet unwarranted; instead, I propose that more rigorous analytical techniques, as well as multigene and population-based approaches, are required for a full understanding of the consequences of mating system variation for the evolution of reproductive tract genes.
Collapse
Affiliation(s)
- Alex Wong
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
26
|
Mayrose I, Otto SP. A Likelihood Method for Detecting Trait-Dependent Shifts in the Rate of Molecular Evolution. Mol Biol Evol 2010; 28:759-70. [DOI: 10.1093/molbev/msq263] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
27
|
Lanfear R, Welch JJ, Bromham L. Watching the clock: Studying variation in rates of molecular evolution between species. Trends Ecol Evol 2010; 25:495-503. [DOI: 10.1016/j.tree.2010.06.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
|
28
|
Finn S, Civetta A. Sexual selection and the molecular evolution of ADAM proteins. J Mol Evol 2010; 71:231-40. [PMID: 20730583 DOI: 10.1007/s00239-010-9382-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/09/2010] [Indexed: 12/12/2022]
Abstract
Rapid evolution has been identified for many reproductive genes and recent studies have combined phylogenetic tests and information on species mating systems to test sexual selection. Here we examined the molecular evolution of the ADAM gene family, a diverse group of 35 proteins capable of adhesion to and cleavage of other proteins, using sequence data from 25 mammalian genes. Out of the 25 genes analyzed, all those expressed in male reproductive tissue showed evidence of positive selection. Positively selected amino acids within the protein adhesion domain were only found in sperm surface ADAM proteins (ADAMs 1, 2, 3, 4, and 32) suggesting selection driven by male x female interactions. We tested heterogeneity in rates of evolution of the adhesion domain of ADAM proteins by using sequence data from Hominidae and macaques. The use of the branch and branch-site models (PAML) showed evidence of higher d (N)/d (S) and/or positive selection linked to branches experiencing high postmating selective pressures (chimpanzee and macaque) for Adams 2, 18, and 23. Moreover, we found consistent higher proportion of nonsynonymous relative to synonymous and noncoding sequence substitutions in chimpanzee and/or macaque only for Adams 2, 18, and 23. Our results suggest that lineage-specific sexual selection bouts might have driven the evolution of the adhesion sperm protein surface domains of ADAMs 2 and 18 in primates. Adams 2 and 18 are localized in chromosome 8 of primates and adjacent to each other, so their evolution might have also been influenced by their common genome localization.
Collapse
Affiliation(s)
- Scott Finn
- Department of Biology, University of Winnipeg, 515 Portage Ave., Winnipeg, MB, R3B 2E9, Canada
| | | |
Collapse
|