1
|
Liu Q, Yu M, Bai M. A study on a recommendation algorithm based on spectral clustering and GRU. iScience 2024; 27:108660. [PMID: 38313050 PMCID: PMC10835353 DOI: 10.1016/j.isci.2023.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024] Open
Abstract
With the development of e-commerce, the importance of recommendation algorithms has significantly increased. However, traditional recommendation systems struggle to address issues such as data sparsity and cold start. This article proposes an optimization method for a recommendation system based on spectral clustering (SC) and gated recurrent unit (GRU), named the GRU-KSC algorithm. Firstly, this paper improves the original spectral clustering algorithm by introducing Kmc2, proposing a novel spectral clustering recommendation algorithm (K-means++ SC, KSC) based on the existing SC algorithm. Secondly, building upon the original GRU model, the paper presents a hybrid recommendation algorithm (Hybrid GRU, HGRU) capable of capturing long-term user interests for a more personalized recommendation. Experiments conducted on real datasets demonstrate that our method outperforms existing benchmark methods in terms of accuracy and robustness.
Collapse
Affiliation(s)
- Qingyuan Liu
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Ming Yu
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Miaoyuan Bai
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China
| |
Collapse
|
2
|
Azad A, Pavlopoulos GA, Ouzounis CA, Kyrpides NC, Buluç A. HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks. Nucleic Acids Res 2019; 46:e33. [PMID: 29315405 PMCID: PMC5888241 DOI: 10.1093/nar/gkx1313] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 11/13/2022] Open
Abstract
Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein–protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL’s scalability to cluster large datasets still remains a bottleneck due to high running times and memory demands. Here, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ∼70 million nodes with ∼68 billion edges in ∼2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.
Collapse
Affiliation(s)
- Ariful Azad
- Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8150, USA
| | - Georgios A Pavlopoulos
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Christos A Ouzounis
- Biological Computation & Process Laboratory, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thessalonica 57001, Greece
| | - Nikos C Kyrpides
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Aydin Buluç
- Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720-8150, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Gao J, Sundström G, Moghadam BT, Zamani N, Grabherr MG. ACES: a machine learning toolbox for clustering analysis and visualization. BMC Genomics 2018; 19:964. [PMID: 30587115 PMCID: PMC6307290 DOI: 10.1186/s12864-018-5300-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Background Studies that aim at explaining phenotypes or disease susceptibility by genetic or epigenetic variants often rely on clustering methods to stratify individuals or samples. While statistical associations may point at increased risk for certain parts of the population, the ultimate goal is to make precise predictions for each individual. This necessitates tools that allow for the rapid inspection of each data point, in particular to find explanations for outliers. Results ACES is an integrative cluster- and phenotype-browser, which implements standard clustering methods, as well as multiple visualization methods in which all sample information can be displayed quickly. In addition, ACES can automatically mine a list of phenotypes for cluster enrichment, whereby the number of clusters and their boundaries are estimated by a novel method. For visual data browsing, ACES provides a 2D or 3D PCA or Heat Map view. ACES is implemented in Java, with a focus on a user-friendly, interactive, graphical interface. Conclusions ACES has been proven an invaluable tool for analyzing large, pre-filtered DNA methylation data sets and RNA-Sequencing data, due to its ease to link molecular markers to complex phenotypes. The source code is available from https://github.com/GrabherrGroup/ACES.
Collapse
Affiliation(s)
- Jiangning Gao
- Department of medical biochemistry and microbiology, Uppsala University, Uppsala, Sweden.
| | - Görel Sundström
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Neda Zamani
- Department of medical biochemistry and microbiology, Uppsala University, Uppsala, Sweden
| | - Manfred G Grabherr
- Department of medical biochemistry and microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Papanikolaou N, Pavlopoulos GA, Theodosiou T, Vizirianakis IS, Iliopoulos I. DrugQuest - a text mining workflow for drug association discovery. BMC Bioinformatics 2016; 17 Suppl 5:182. [PMID: 27295093 PMCID: PMC4905607 DOI: 10.1186/s12859-016-1041-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Text mining and data integration methods are gaining ground in the field of health sciences due to the exponential growth of bio-medical literature and information stored in biological databases. While such methods mostly try to extract bioentity associations from PubMed, very few of them are dedicated in mining other types of repositories such as chemical databases. Results Herein, we apply a text mining approach on the DrugBank database in order to explore drug associations based on the DrugBank “Description”, “Indication”, “Pharmacodynamics” and “Mechanism of Action” text fields. We apply Name Entity Recognition (NER) techniques on these fields to identify chemicals, proteins, genes, pathways, diseases, and we utilize the TextQuest algorithm to find additional biologically significant words. Using a plethora of similarity and partitional clustering techniques, we group the DrugBank records based on their common terms and investigate possible scenarios why these records are clustered together. Different views such as clustered chemicals based on their textual information, tag clouds consisting of Significant Terms along with the terms that were used for clustering are delivered to the user through a user-friendly web interface. Conclusions DrugQuest is a text mining tool for knowledge discovery: it is designed to cluster DrugBank records based on text attributes in order to find new associations between drugs. The service is freely available at http://bioinformatics.med.uoc.gr/drugquest.
Collapse
Affiliation(s)
- Nikolas Papanikolaou
- Division of Basic Sciences, University of Crete, Medical School, Gouves, 71003, Heraklion, Crete, Greece
| | - Georgios A Pavlopoulos
- Division of Basic Sciences, University of Crete, Medical School, Gouves, 71003, Heraklion, Crete, Greece
| | - Theodosios Theodosiou
- Division of Basic Sciences, University of Crete, Medical School, Gouves, 71003, Heraklion, Crete, Greece
| | - Ioannis S Vizirianakis
- School of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Ioannis Iliopoulos
- Division of Basic Sciences, University of Crete, Medical School, Gouves, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
5
|
Pavlopoulos GA, Malliarakis D, Papanikolaou N, Theodosiou T, Enright AJ, Iliopoulos I. Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future. Gigascience 2015; 4:38. [PMID: 26309733 PMCID: PMC4548842 DOI: 10.1186/s13742-015-0077-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/03/2015] [Indexed: 01/31/2023] Open
Abstract
"Α picture is worth a thousand words." This widely used adage sums up in a few words the notion that a successful visual representation of a concept should enable easy and rapid absorption of large amounts of information. Although, in general, the notion of capturing complex ideas using images is very appealing, would 1000 words be enough to describe the unknown in a research field such as the life sciences? Life sciences is one of the biggest generators of enormous datasets, mainly as a result of recent and rapid technological advances; their complexity can make these datasets incomprehensible without effective visualization methods. Here we discuss the past, present and future of genomic and systems biology visualization. We briefly comment on many visualization and analysis tools and the purposes that they serve. We focus on the latest libraries and programming languages that enable more effective, efficient and faster approaches for visualizing biological concepts, and also comment on the future human-computer interaction trends that would enable for enhancing visualization further.
Collapse
Affiliation(s)
- Georgios A Pavlopoulos
- Bioinformatics & Computational Biology Laboratory, Division of Basic Sciences, University of Crete, Medical School, 70013 Heraklion, Crete Greece
| | | | - Nikolas Papanikolaou
- Bioinformatics & Computational Biology Laboratory, Division of Basic Sciences, University of Crete, Medical School, 70013 Heraklion, Crete Greece
| | - Theodosis Theodosiou
- Bioinformatics & Computational Biology Laboratory, Division of Basic Sciences, University of Crete, Medical School, 70013 Heraklion, Crete Greece
| | - Anton J Enright
- EMBL - European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SD UK
| | - Ioannis Iliopoulos
- Bioinformatics & Computational Biology Laboratory, Division of Basic Sciences, University of Crete, Medical School, 70013 Heraklion, Crete Greece
| |
Collapse
|
6
|
Papanikolaou N, Pavlopoulos GA, Pafilis E, Theodosiou T, Schneider R, Satagopam VP, Ouzounis CA, Eliopoulos AG, Promponas VJ, Iliopoulos I. BioTextQuest(+): a knowledge integration platform for literature mining and concept discovery. ACTA ACUST UNITED AC 2014; 30:3249-56. [PMID: 25100685 DOI: 10.1093/bioinformatics/btu524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SUMMARY The iterative process of finding relevant information in biomedical literature and performing bioinformatics analyses might result in an endless loop for an inexperienced user, considering the exponential growth of scientific corpora and the plethora of tools designed to mine PubMed(®) and related biological databases. Herein, we describe BioTextQuest(+), a web-based interactive knowledge exploration platform with significant advances to its predecessor (BioTextQuest), aiming to bridge processes such as bioentity recognition, functional annotation, document clustering and data integration towards literature mining and concept discovery. BioTextQuest(+) enables PubMed and OMIM querying, retrieval of abstracts related to a targeted request and optimal detection of genes, proteins, molecular functions, pathways and biological processes within the retrieved documents. The front-end interface facilitates the browsing of document clustering per subject, the analysis of term co-occurrence, the generation of tag clouds containing highly represented terms per cluster and at-a-glance popup windows with information about relevant genes and proteins. Moreover, to support experimental research, BioTextQuest(+) addresses integration of its primary functionality with biological repositories and software tools able to deliver further bioinformatics services. The Google-like interface extends beyond simple use by offering a range of advanced parameterization for expert users. We demonstrate the functionality of BioTextQuest(+) through several exemplary research scenarios including author disambiguation, functional term enrichment, knowledge acquisition and concept discovery linking major human diseases, such as obesity and ageing. AVAILABILITY The service is accessible at http://bioinformatics.med.uoc.gr/biotextquest. CONTACT g.pavlopoulos@gmail.com or georgios.pavlopoulos@esat.kuleuven.be SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nikolas Papanikolaou
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| | - Georgios A Pavlopoulos
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| | - Evangelos Pafilis
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| | - Theodosios Theodosiou
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| | - Reinhard Schneider
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| | - Venkata P Satagopam
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| | - Christos A Ouzounis
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| | - Aristides G Eliopoulos
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| | - Vasilis J Promponas
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| | - Ioannis Iliopoulos
- Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Thessalonica, Greece, Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus
| |
Collapse
|
7
|
Pavlopoulos GA, Promponas VJ, Ouzounis CA, Iliopoulos I. Biological information extraction and co-occurrence analysis. Methods Mol Biol 2014; 1159:77-92. [PMID: 24788262 DOI: 10.1007/978-1-4939-0709-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nowadays, it is possible to identify terms corresponding to biological entities within passages in biomedical text corpora: critically, their potential relationships then need to be detected. These relationships are typically detected by co-occurrence analysis, revealing associations between bioentities through their coexistence in single sentences and/or entire abstracts. These associations implicitly define networks, whose nodes represent terms/bioentities/concepts being connected by relationship edges; edge weights might represent confidence for these semantic connections.This chapter provides a review of current methods for co-occurrence analysis, focusing on data storage, analysis, and representation. We highlight scenarios of these approaches implemented by useful tools for information extraction and knowledge inference in the field of systems biology. We illustrate the practical utility of two online resources providing services of this type-namely, STRING and BioTextQuest-concluding with a discussion of current challenges and future perspectives in the field.
Collapse
Affiliation(s)
- Georgios A Pavlopoulos
- Division of Basic Sciences, University of Crete Medical School, Heraklion, 71110, Greece
| | | | | | | |
Collapse
|
8
|
Gao S, Chen A, Rahmani A, Jarada T, Alhajj R, Demetrick D, Zeng J. MCF: a tool to find multi-scale community profiles in biological networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2013; 112:665-672. [PMID: 24075082 DOI: 10.1016/j.cmpb.2013.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Recent developments of complex graph clustering methods have implicated the practical applications with biological networks in different settings. Multi-scale Community Finder (MCF) is a tool to profile network communities (i.e., clusters of nodes) with the control of community sizes. The controlling parameter is referred to as the scale of the network community profile. MCF is able to find communities in all major types of networks including directed, signed, bipartite, and multi-slice networks. The fast computation promotes the practicability of the tool for large-scaled analysis (e.g., protein-protein interaction and gene co-expression networks). MCF is distributed as an open-source C++ package for academic use with both command line and user interface options, and can be downloaded at http://bsdxd.cpsc.ucalgary.ca/MCF. Detailed user manual and sample data sets are also available at the project website.
Collapse
Affiliation(s)
- Shang Gao
- Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Praneenararat T, Takagi T, Iwasaki W. Integration of interactive, multi-scale network navigation approach with Cytoscape for functional genomics in the big data era. BMC Genomics 2012; 13 Suppl 7:S24. [PMID: 23281970 PMCID: PMC3521214 DOI: 10.1186/1471-2164-13-s7-s24] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background The overwhelming amount of network data in functional genomics is making its visualization cluttered with jumbling nodes and edges. Such cluttered network visualization, which is known as "hair-balls", is significantly hindering data interpretation and analysis of researchers. Effective navigation approaches that can always abstract network data properly and present them insightfully are hence required, to help researchers interpret the data and acquire knowledge efficiently. Cytoscape is a de facto standard platform for network visualization and analysis, which has many users around the world. Apart from its core sophisticated features, it easily allows for extension of the functionalities by loading extra plug-ins. Results We developed NaviClusterCS, which enables researchers to interactively navigate large biological networks of ~100,000 nodes in a "Google Maps-like" manner in the Cytoscape environment. NaviClusterCS rapidly and automatically identifies biologically meaningful clusters in large networks, e.g., proteins sharing similar biological functions in protein-protein interaction networks. Then, it displays not all nodes but only preferable numbers of those clusters at any magnification to avoid creating the cluttered network visualization, while its zooming and re-centering functions still enable researchers to interactively analyze the networks in detail. Its application to a real Arabidopsis co-expression network dataset illustrated a practical use of the tool for suggesting knowledge that is hidden in large biological networks and difficult to be obtained using other visualization methods. Conclusions NaviClusterCS provides interactive and multi-scale network navigation to a wide range of biologists in the big data era, via the de facto standard platform for network visualization. It can be freely downloaded at http://navicluster.cb.k.u-tokyo.ac.jp/cs/ and installed as a plug-in of Cytoscape.
Collapse
Affiliation(s)
- Thanet Praneenararat
- Department of Computational Biology, University of Tokyo, Kashiwa, Chiba, 277-8568, Japan.
| | | | | |
Collapse
|
10
|
Ren X, Wang Y, Wang J, Zhang XS. A unified computational model for revealing and predicting subtle subtypes of cancers. BMC Bioinformatics 2012; 13:70. [PMID: 22548981 PMCID: PMC3464623 DOI: 10.1186/1471-2105-13-70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 05/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene expression profiling technologies have gradually become a community standard tool for clinical applications. For example, gene expression data has been analyzed to reveal novel disease subtypes (class discovery) and assign particular samples to well-defined classes (class prediction). In the past decade, many effective methods have been proposed for individual applications. However, there is still a pressing need for a unified framework that can reveal the complicated relationships between samples. RESULTS We propose a novel convex optimization model to perform class discovery and class prediction in a unified framework. An efficient algorithm is designed and software named OTCC (Optimization Tool for Clustering and Classification) is developed. Comparison in a simulated dataset shows that our method outperforms the existing methods. We then applied OTCC to acute leukemia and breast cancer datasets. The results demonstrate that our method not only can reveal the subtle structures underlying those cancer gene expression data but also can accurately predict the class labels of unknown cancer samples. Therefore, our method holds the promise to identify novel cancer subtypes and improve diagnosis. CONCLUSIONS We propose a unified computational framework for class discovery and class prediction to facilitate the discovery and prediction of subtle subtypes of cancers. Our method can be generally applied to multiple types of measurements, e.g., gene expression profiling, proteomic measuring, and recent next-generation sequencing, since it only requires the similarities among samples as input.
Collapse
Affiliation(s)
- Xianwen Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | |
Collapse
|
11
|
Moschopoulos CN, Pavlopoulos GA, Iacucci E, Aerts J, Likothanassis S, Schneider R, Kossida S. Which clustering algorithm is better for predicting protein complexes? BMC Res Notes 2011; 4:549. [PMID: 22185599 PMCID: PMC3267700 DOI: 10.1186/1756-0500-4-549] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 10/20/2011] [Accepted: 12/20/2011] [Indexed: 12/04/2022] Open
Abstract
Background Protein-Protein interactions (PPI) play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks. Results In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H) and Tandem Affinity Purification (TAP) methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases. Conclusions While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm
Collapse
Affiliation(s)
- Charalampos N Moschopoulos
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527 Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
12
|
Morris JH, Apeltsin L, Newman AM, Baumbach J, Wittkop T, Su G, Bader GD, Ferrin TE. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics 2011; 12:436. [PMID: 22070249 PMCID: PMC3262844 DOI: 10.1186/1471-2105-12-436] [Citation(s) in RCA: 443] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/09/2011] [Indexed: 12/02/2022] Open
Abstract
Background In the post-genomic era, the rapid increase in high-throughput data calls for computational tools capable of integrating data of diverse types and facilitating recognition of biologically meaningful patterns within them. For example, protein-protein interaction data sets have been clustered to identify stable complexes, but scientists lack easily accessible tools to facilitate combined analyses of multiple data sets from different types of experiments. Here we present clusterMaker, a Cytoscape plugin that implements several clustering algorithms and provides network, dendrogram, and heat map views of the results. The Cytoscape network is linked to all of the other views, so that a selection in one is immediately reflected in the others. clusterMaker is the first Cytoscape plugin to implement such a wide variety of clustering algorithms and visualizations, including the only implementations of hierarchical clustering, dendrogram plus heat map visualization (tree view), k-means, k-medoid, SCPS, AutoSOME, and native (Java) MCL. Results Results are presented in the form of three scenarios of use: analysis of protein expression data using a recently published mouse interactome and a mouse microarray data set of nearly one hundred diverse cell/tissue types; the identification of protein complexes in the yeast Saccharomyces cerevisiae; and the cluster analysis of the vicinal oxygen chelate (VOC) enzyme superfamily. For scenario one, we explore functionally enriched mouse interactomes specific to particular cellular phenotypes and apply fuzzy clustering. For scenario two, we explore the prefoldin complex in detail using both physical and genetic interaction clusters. For scenario three, we explore the possible annotation of a protein as a methylmalonyl-CoA epimerase within the VOC superfamily. Cytoscape session files for all three scenarios are provided in the Additional Files section. Conclusions The Cytoscape plugin clusterMaker provides a number of clustering algorithms and visualizations that can be used independently or in combination for analysis and visualization of biological data sets, and for confirming or generating hypotheses about biological function. Several of these visualizations and algorithms are only available to Cytoscape users through the clusterMaker plugin. clusterMaker is available via the Cytoscape plugin manager.
Collapse
Affiliation(s)
- John H Morris
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Medusa: A tool for exploring and clustering biological networks. BMC Res Notes 2011; 4:384. [PMID: 21978489 PMCID: PMC3197509 DOI: 10.1186/1756-0500-4-384] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background Biological processes such as metabolic pathways, gene regulation or protein-protein interactions are often represented as graphs in systems biology. The understanding of such networks, their analysis, and their visualization are today important challenges in life sciences. While a great variety of visualization tools that try to address most of these challenges already exists, only few of them succeed to bridge the gap between visualization and network analysis. Findings Medusa is a powerful tool for visualization and clustering analysis of large-scale biological networks. It is highly interactive and it supports weighted and unweighted multi-edged directed and undirected graphs. It combines a variety of layouts and clustering methods for comprehensive views and advanced data analysis. Its main purpose is to integrate visualization and analysis of heterogeneous data from different sources into a single network. Conclusions Medusa provides a concise visual tool, which is helpful for network analysis and interpretation. Medusa is offered both as a standalone application and as an applet written in Java. It can be found at: https://sites.google.com/site/medusa3visualization.
Collapse
|
14
|
Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos PG. Using graph theory to analyze biological networks. BioData Min 2011; 4:10. [PMID: 21527005 PMCID: PMC3101653 DOI: 10.1186/1756-0381-4-10] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 04/28/2011] [Indexed: 11/10/2022] Open
Abstract
Understanding complex systems often requires a bottom-up analysis towards a systems biology approach. The need to investigate a system, not only as individual components but as a whole, emerges. This can be done by examining the elementary constituents individually and then how these are connected. The myriad components of a system and their interactions are best characterized as networks and they are mainly represented as graphs where thousands of nodes are connected with thousands of vertices. In this article we demonstrate approaches, models and methods from the graph theory universe and we discuss ways in which they can be used to reveal hidden properties and features of a network. This network profiling combined with knowledge extraction will help us to better understand the biological significance of the system.
Collapse
Affiliation(s)
- Georgios A Pavlopoulos
- Department of Computer Science and Biomedical Informatics, University of Central Greece, Lamia, 35100, Greece
- Faculty of Engineering - ESAT/SCD, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001, Leuven-Heverlee, Belgium
| | - Maria Secrier
- Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Charalampos N Moschopoulos
- Department of Computer Engineering & Informatics, University of Patras, Rio, 6500, Patras, Greece
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527, Athens, Greece
| | | | - Sophia Kossida
- Bioinformatics & Medical Informatics Team, Biomedical Research Foundation, Academy of Athens, Soranou Efessiou 4, 11527, Athens, Greece
| | - Jan Aerts
- Faculty of Engineering - ESAT/SCD, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001, Leuven-Heverlee, Belgium
| | - Reinhard Schneider
- Structural and Computational Biology Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Limpertsberg, 162 A, avenue de la Faïencerie, L-1511 Luxembourg
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Central Greece, Lamia, 35100, Greece
| |
Collapse
|
15
|
Praneenararat T, Takagi T, Iwasaki W. Interactive, multiscale navigation of large and complicated biological networks. ACTA ACUST UNITED AC 2011; 27:1121-7. [PMID: 21349867 PMCID: PMC3072549 DOI: 10.1093/bioinformatics/btr083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Motivation: Many types of omics data are compiled as lists of connections between elements and visualized as networks or graphs where the nodes and edges correspond to the elements and the connections, respectively. However, these networks often appear as ‘hair-balls’—with a large number of extremely tangled edges—and cannot be visually interpreted. Results: We present an interactive, multiscale navigation method for biological networks. Our approach can automatically and rapidly abstract any portion of a large network of interest to an immediately interpretable extent. The method is based on an ultrafast graph clustering technique that abstracts networks of about 100 000 nodes in a second by iteratively grouping densely connected portions and a biological-property-based clustering technique that takes advantage of biological information often provided for biological entities (e.g. Gene Ontology terms). It was confirmed to be effective by applying it to real yeast protein network data, and would greatly help modern biologists faced with large, complicated networks in a similar manner to how Web mapping services enable interactive multiscale navigation of geographical maps (e.g. Google Maps). Availability: Java implementation of our method, named NaviCluster, is available at http://navicluster.cb.k.u-tokyo.ac.jp/. Contact:thanet@cb.k.u-tokyo.ac.jp Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Thanet Praneenararat
- Department of Computational Biology, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan.
| | | | | |
Collapse
|
16
|
Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011; 39:D561-8. [PMID: 21045058 PMCID: PMC3013807 DOI: 10.1093/nar/gkq973] [Citation(s) in RCA: 2624] [Impact Index Per Article: 187.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 10/03/2010] [Indexed: 12/12/2022] Open
Abstract
An essential prerequisite for any systems-level understanding of cellular functions is to correctly uncover and annotate all functional interactions among proteins in the cell. Toward this goal, remarkable progress has been made in recent years, both in terms of experimental measurements and computational prediction techniques. However, public efforts to collect and present protein interaction information have struggled to keep up with the pace of interaction discovery, partly because protein-protein interaction information can be error-prone and require considerable effort to annotate. Here, we present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score, and accessory information such as protein domains and 3D structures is made available, all within a stable and consistent identifier space. New features in STRING include an interactive network viewer that can cluster networks on demand, updated on-screen previews of structural information including homology models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org.
Collapse
Affiliation(s)
- Damian Szklarczyk
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Andrea Franceschini
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Michael Kuhn
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Milan Simonovic
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Alexander Roth
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Pablo Minguez
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Tobias Doerks
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Manuel Stark
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Jean Muller
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Peer Bork
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Lars J. Jensen
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| | - Christian von Mering
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Denmark, Faculty of Science, Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Switzerland, Biotechnology Center, Technical University Dresden, Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany, Institute of Genetics and Molecular and Cellular Biology, CNRS, INSERM, University of Strasbourg, Genetic Diagnostics Laboratory, CHU Strasbourg Nouvel Hôpital Civil, Strasbourg, France and Max-Delbrück-Centre for Molecular Medicine, Berlin, Germany
| |
Collapse
|