Moradigaravand D, Engelstädter J. The effect of bacterial recombination on adaptation on fitness landscapes with limited peak accessibility.
PLoS Comput Biol 2012;
8:e1002735. [PMID:
23133344 PMCID:
PMC3487459 DOI:
10.1371/journal.pcbi.1002735]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/22/2012] [Indexed: 12/19/2022] Open
Abstract
There is ample empirical evidence revealing that fitness landscapes are often complex: the fitness effect of a newly arisen mutation can depend strongly on the allelic state at other loci. However, little is known about the effects of recombination on adaptation on such fitness landscapes. Here, we investigate how recombination influences the rate of adaptation on a special type of complex fitness landscapes. On these landscapes, the mutational trajectories from the least to the most fit genotype are interrupted by genotypes with low relative fitness. We study the dynamics of adapting populations on landscapes with different compositions and numbers of low fitness genotypes, with and without recombination. Our results of the deterministic model (assuming an infinite population size) show that recombination generally decelerates adaptation on these landscapes. However, in finite populations, this deceleration is outweighed by the accelerating Fisher-Muller effect under certain conditions. We conclude that recombination has complex effects on adaptation that are highly dependent on the particular fitness landscape, population size and recombination rate.
The emergence and persistence of recombination is a long-standing open question in evolutionary biology. Most previous theoretical studies assumed relatively simple fitness landscapes, i.e., simple relationships between allelic states at different loci and fitness. By contrast, empirically determined bacterial and viral fitness landscapes reveal pervasive complex interactions between alleles at different loci. In this study, we explore the effect of recombination on adaptation on fitness landscapes where some trajectories leading to a global fitness peak are interrupted by genotypes of very low fitness. We find that in infinitely large populations, recombination generally reduces the rate of adaptation. However, in finite populations and under certain conditions, recombination can substantially speed up adaptation. Our study provides insights into the effect of recombination on more realistic fitness landscapes. Moreover, it helps gain a better understanding of the dynamics of the spread of adaptive genes in recombining bacterial populations during niche expansion and colonization of new habitats.
Collapse