1
|
Ramesh V, Suwanmajo T, Krishnan J. Network regulation meets substrate modification chemistry. J R Soc Interface 2023; 20:20220510. [PMID: 36722169 PMCID: PMC9890324 DOI: 10.1098/rsif.2022.0510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
Biochemical networks are at the heart of cellular information processing. These networks contain distinct facets: (i) processing of information from the environment via cascades/pathways along with network regulation and (ii) modification of substrates in different ways, to confer protein functionality, stability and processing. While many studies focus on these factors individually, how they interact and the consequences for cellular systems behaviour are poorly understood. We develop a systems framework for this purpose by examining the interplay of network regulation (canonical feedback and feed-forward circuits) and multisite modification, as an exemplar of substrate modification. Using computational, analytical and semi-analytical approaches, we reveal distinct and unexpected ways in which the substrate modification and network levels combine and the emergent behaviour arising therefrom. This has important consequences for dissecting the behaviour of specific signalling networks, tracing the origins of systems behaviour, inference of networks from data, robustness/evolvability and multi-level engineering of biomolecular networks. Overall, we repeatedly demonstrate how focusing on only one level (say network regulation) can lead to profoundly misleading conclusions about all these aspects, and reveal a number of important consequences for experimental/theoretical/data-driven interrogations of cellular signalling systems.
Collapse
Affiliation(s)
- Vaidhiswaran Ramesh
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thapanar Suwanmajo
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J. Krishnan
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
2
|
Dai Y, Buxton KE, Schaffer LV, Miller RM, Millikin RJ, Scalf M, Frey BL, Shortreed MR, Smith LM. Constructing Human Proteoform Families Using Intact-Mass and Top-Down Proteomics with a Multi-Protease Global Post-Translational Modification Discovery Database. J Proteome Res 2019; 18:3671-3680. [PMID: 31479276 DOI: 10.1021/acs.jproteome.9b00339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Complex human biomolecular processes are made possible by the diversity of human proteoforms. Constructing proteoform families, groups of proteoforms derived from the same gene, is one way to represent this diversity. Comprehensive, high-confidence identification of human proteoforms remains a central challenge in mass spectrometry-based proteomics. We have previously reported a strategy for proteoform identification using intact-mass measurements, and we have since improved that strategy by mass calibration based on search results, the use of a global post-translational modification discovery database, and the integration of top-down proteomics results with intact-mass analysis. In the present study, we combine these strategies for enhanced proteoform identification in total cell lysate from the Jurkat human T lymphocyte cell line. We collected, processed, and integrated three types of proteomics data (NeuCode-labeled intact-mass, label-free top-down, and multi-protease bottom-up) to maximize the number of confident proteoform identifications. The integrated analysis revealed 5950 unique experimentally observed proteoforms, which were assembled into 848 proteoform families. Twenty percent of the observed proteoforms were confidently identified at a 3.9% false discovery rate, representing 1207 unique proteoforms derived from 484 genes.
Collapse
Affiliation(s)
- Yunxiang Dai
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States.,Biophysics Graduate Program , University of Wisconsin , 413 Bock Laboratories, 1525 Linden Drive , Madison , Wisconsin 53706 , United States
| | - Katherine E Buxton
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Leah V Schaffer
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Rachel M Miller
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Robert J Millikin
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Mark Scalf
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Brian L Frey
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Michael R Shortreed
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Lloyd M Smith
- Department of Chemistry , University of Wisconsin , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
3
|
Gianazza E, Parravicini C, Primi R, Miller I, Eberini I. In silico prediction and characterization of protein post-translational modifications. J Proteomics 2015; 134:65-75. [PMID: 26436211 DOI: 10.1016/j.jprot.2015.09.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/17/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023]
Abstract
This review outlines the computational approaches and procedures for predicting post translational modification (PTM)-induced changes in protein conformation and their influence on protein function(s), the latter being assessed as differential affinity in interaction with either low (ligands for receptors or transporters, substrates for enzymes) or high molecular mass molecules (proteins or nucleic acids in supramolecular assemblies). The scope for an in silico approach is discussed against a summary of the in vitro evidence on the structural and functional outcome of protein PTM.
Collapse
Affiliation(s)
- Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Gruppo di Studio per la Proteomica e la Struttura delle Proteine, Sezione di Scienze Farmacologiche, Via Balzaretti 9, I-20133 Milan, Italy.
| | - Chiara Parravicini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Laboratorio di Biochimica e Biofisica Computazionale, Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia, Via Trentacoste, 2, I-20134 Milan, Italy
| | - Roberto Primi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Laboratorio di Biochimica e Biofisica Computazionale, Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia, Via Trentacoste, 2, I-20134 Milan, Italy
| | - Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Laboratorio di Biochimica e Biofisica Computazionale, Sezione di Biochimica, Biofisica, Fisiologia ed Immunopatologia, Via Trentacoste, 2, I-20134 Milan, Italy
| |
Collapse
|
4
|
Eriksson C, Masaki N, Yao I, Hayasaka T, Setou M. MALDI Imaging Mass Spectrometry-A Mini Review of Methods and Recent Developments. Mass Spectrom (Tokyo) 2013; 2:S0022. [PMID: 24349941 DOI: 10.5702/massspectrometry.s0022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/23/2013] [Indexed: 12/16/2022] Open
Abstract
As the only imaging method available, Imaging Mass Spectrometry (IMS) can determine both the identity and the distribution of hundreds of molecules on tissue sections, all in one single run. IMS is becoming an established research technology, and due to recent technical and methodological improvements the interest in this technology is increasing steadily and within a wide range of scientific fields. Of the different IMS methods available, matrix-assisted laser desorption/ionization (MALDI) IMS is the most commonly employed. The course at IMSC 2012 in Kyoto covered the fundamental principles and techniques of MALDI-IMS, assuming no previous experience in IMS. This mini review summarizes the content of the one-day course and describes some of the most recent work performed within this research field.
Collapse
Affiliation(s)
- Cecilia Eriksson
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine ; Medical Mass Spectrometry, Department of Pharmaceutical Biosciences, Uppsala University
| | - Noritaka Masaki
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine
| | - Ikuko Yao
- Department of Medical Chemistry, Kansai Medical University
| | - Takahiro Hayasaka
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine
| | - Mitsutoshi Setou
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine
| |
Collapse
|