1
|
Li B, Liu J, Yu Y, Wang P, Zhang Y, Ni X, Liu Q, Zhang X, Wang Z, Wang Y. Network-Wide Screen Identifies Variation of Novel Precise On-Module Targets Using Conformational Modudaoism. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 7:16-25. [PMID: 28925077 PMCID: PMC5784734 DOI: 10.1002/psp4.12253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 01/30/2023]
Abstract
Modular targeting is promising in drug research at the network level, but it is challenging to quantificationally identify the precise on-modules. Based on a proposed Modudaoism (MD), we defined conserved MD (MDc) and varied MD (MDv) to quantitatively evaluate the conformational and energy variations of modules, and thereby identify the conserved and discrepant allosteric modules (AMs). Compared to the Zsummary , MDc/MDv got an optimized result of module preserved ratio and modular structure. In the mice anti-ischemic networks, 3, 5, and 1 conserved AMs as well as 4, 1, and 3 on-modules of baicalin (BA), jasminoidin (JA), and ursodeoxycholic acid (UA) were identified by MDc and MDv, 5 unique AMs and their characteristic actions were revealed. Besides, co-immunoprecipitation (Co-IP) experiments validated the representative modular structure. MDc/MDv method can quantitatively define the conformational variations of modules and screen the precise on-modules network-wide, which may provide a promising strategy for drug discovery.
Collapse
Affiliation(s)
- Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,ShanXi Buchang Pharmaceutical Co., Ltd., Heze, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xumin Ni
- Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing, China
| | - Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongyan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Xu Y, Guo M, Liu X, Wang C, Liu Y, Liu G. Identify bilayer modules via pseudo-3D clustering: applications to miRNA-gene bilayer networks. Nucleic Acids Res 2016; 44:e152. [PMID: 27484480 PMCID: PMC5741208 DOI: 10.1093/nar/gkw679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/30/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Module identification is a frequently used approach for mining local structures with more significance in global networks. Recently, a wide variety of bilayer networks are emerging to characterize the more complex biological processes. In the light of special topological properties of bilayer networks and the accompanying challenges, there is yet no effective method aiming at bilayer module identification to probe the modular organizations from the more inspiring bilayer networks. To this end, we proposed the pseudo-3D clustering algorithm, which starts from extracting initial non-hierarchically organized modules and then iteratively deciphers the hierarchical organization of modules according to a bottom-up strategy. Specifically, a modularity function for bilayer modules was proposed to facilitate the algorithm reporting the optimal partition that gives the most accurate characterization of the bilayer network. Simulation studies demonstrated its robustness and outperformance against alternative competing methods. Specific applications to both the soybean and human miRNA-gene bilayer networks demonstrated that the pseudo-3D clustering algorithm successfully identified the overlapping, hierarchically organized and highly cohesive bilayer modules. The analyses on topology, functional and human disease enrichment and the bilayer subnetwork involved in soybean fat biosynthesis provided both the theoretical and biological evidence supporting the effectiveness and robustness of pseudo-3D clustering algorithm.
Collapse
Affiliation(s)
- Yungang Xu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Maozu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoyan Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Guojun Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
Quantitative assessment of gene expression network module-validation methods. Sci Rep 2015; 5:15258. [PMID: 26470848 PMCID: PMC4607977 DOI: 10.1038/srep15258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/21/2015] [Indexed: 02/01/2023] Open
Abstract
Validation of pluripotent modules in diverse networks holds enormous potential for systems biology and network pharmacology. An arising challenge is how to assess the accuracy of discovering all potential modules from multi-omic networks and validating their architectural characteristics based on innovative computational methods beyond function enrichment and biological validation. To display the framework progress in this domain, we systematically divided the existing Computational Validation Approaches based on Modular Architecture (CVAMA) into topology-based approaches (TBA) and statistics-based approaches (SBA). We compared the available module validation methods based on 11 gene expression datasets, and partially consistent results in the form of homogeneous models were obtained with each individual approach, whereas discrepant contradictory results were found between TBA and SBA. The TBA of the Zsummary value had a higher Validation Success Ratio (VSR) (51%) and a higher Fluctuation Ratio (FR) (80.92%), whereas the SBA of the approximately unbiased (AU) p-value had a lower VSR (12.3%) and a lower FR (45.84%). The Gray area simulated study revealed a consistent result for these two models and indicated a lower Variation Ratio (VR) (8.10%) of TBA at 6 simulated levels. Despite facing many novel challenges and evidence limitations, CVAMA may offer novel insights into modular networks.
Collapse
|
4
|
Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling. Drug Resist Updat 2014; 17:64-76. [PMID: 25156319 DOI: 10.1016/j.drup.2014.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Revealing functional reorganization or module rewiring between modules at network levels during drug treatment is important to systematically understand therapies and drug responses. The present article proposed a novel model of module network rewiring to characterize functional reorganization of a complex biological system, and described a new framework named as module network rewiring-analysis (MNR) for systematically studying dynamical drug sensitivity and resistance during drug treatment. MNR was used to investigate functional reorganization or rewiring on the module network, rather than molecular network or individual molecules. Our experiments on expression data of patients with Hepatitis C virus infection receiving Interferon therapy demonstrated that consistent module genes derived by MNR could be directly used to reveal new genotypes relevant to drug sensitivity, unlike the other differential analyses of gene expressions. Our results showed that functional connections and reconnections among consistent modules bridged by biological paths were necessary for achieving effective responses of a drug. The hierarchical structures of the temporal module network can be considered as spatio-temporal biomarkers to monitor the efficacy, efficiency, toxicity, and resistance of the therapy. Our study indicates that MNR is a useful tool to identify module biomarkers and further predict dynamical drug sensitivity and resistance, characterize complex dynamic processes for therapy response, and provide biologically systematic clues for pharmacogenomic applications.
Collapse
|
5
|
Chen Y, Wang Z, Wang Y. Spatiotemporal positioning of multipotent modules in diverse biological networks. Cell Mol Life Sci 2014; 71:2605-24. [PMID: 24413666 PMCID: PMC11113103 DOI: 10.1007/s00018-013-1547-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 02/06/2023]
Abstract
A biological network exhibits a modular organization. The modular structure dependent on functional module is of great significance in understanding the organization and dynamics of network functions. A huge variety of module identification methods as well as approaches to analyze modularity and dynamics of the inter- and intra-module interactions have emerged recently, but they are facing unexpected challenges in further practical applications. Here, we discuss recent progress in understanding how such a modular network can be deconstructed spatiotemporally. We focus particularly on elucidating how various deciphering mechanisms operate to ensure precise module identification and assembly. In this case, a system-level understanding of the entire mechanism of module construction is within reach, with important implications for reasonable perspectives in both constructing a modular analysis framework and deconstructing different modular hierarchical structures.
Collapse
Affiliation(s)
- Yinying Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700 China
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700 China
| | - Yongyan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Dongzhimen, Beijing, 100700 China
| |
Collapse
|
6
|
Kortagere S, Lill M, Kerrigan J. Role of computational methods in pharmaceutical sciences. Methods Mol Biol 2012; 929:21-48. [PMID: 23007425 DOI: 10.1007/978-1-62703-050-2_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Over the past two decades computational methods have eased up the financial and experimental burden of early drug discovery process. The in silico methods have provided support in terms of databases, data mining of large genomes, network analysis, systems biology on the bioinformatics front and structure-activity relationship, similarity analysis, docking, and pharmacophore methods for lead design and optimization. This review highlights some of the applications of bioinformatics and chemoinformatics methods that have enriched the field of drug discovery. In addition, the review also provided insights into the use of free energy perturbation methods for efficiently computing binding energy. These in silico methods are complementary and can be easily integrated into the traditional in vitro and in vivo methods to test pharmacological hypothesis.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
7
|
Casey F, Krogan N, Shields DC, Cagney G. Distinct configurations of protein complexes and biochemical pathways revealed by epistatic interaction network motifs. BMC SYSTEMS BIOLOGY 2011; 5:133. [PMID: 21859460 PMCID: PMC3176491 DOI: 10.1186/1752-0509-5-133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 08/22/2011] [Indexed: 11/24/2022]
Abstract
Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.
Collapse
|