1
|
Kumagai K, Shimizu T, Takai A, Kakiuchi N, Takeuchi Y, Hirano T, Takeda H, Mizuguchi A, Teramura M, Ito T, Iguchi E, Nikaido M, Eso Y, Takahashi K, Ueda Y, Miyamoto SI, Obama K, Ogawa S, Marusawa H, Seno H. Expansion of gastric intestinal metaplasia with copy number aberrations contributes to field cancerization. Cancer Res 2022; 82:1712-1723. [PMID: 35363856 DOI: 10.1158/0008-5472.can-21-1523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022]
Abstract
Intestinal metaplasia (IM) is a risk factor for gastric cancer following infection with Helicobacter pylori. To explore the susceptibility of pure gastric IM to cancer development, we investigated genetic alterations in single IM gastric glands. We isolated 50 single IM or non-IM glands from the inflamed gastric mucosa of 11 patients with intramucosal gastric carcinoma (IGC) and 4 patients without IGC; nineteen single glands in the non-inflamed gastric mucosa of 11 individuals from our cohort and previous dataset were also included as controls. Whole exome sequencing of single glands revealed significantly higher accumulation of somatic mutations in various genes within IM glands compared with non-IM glands. Clonal ordering analysis showed that IM glands expanded to form clusters with shared mutations. Additionally, targeted-capture deep sequencing and copy number (CN) analyses were performed in 96 clustered IM or non-IM gastric glands from 26 patients with IGC. CN analyses were also performed on 41 IGC samples and the Cancer Genome Atlas-Stomach Adenocarcinoma datasets. These analyses revealed that polyclonally expanded IM commonly acquired copy number aberrations (CNA), including amplification of chromosomes 8, 20, and 2. A large portion of clustered IM glands typically consisted of common CNAs rather than other cancer-related mutations. Moreover, the CNA patterns of clustered IM glands were similar to those of IGC, indicative of precancerous conditions. Taken together, these findings suggest that, in the gastric mucosa inflamed with H. pylori infection, IM glands expand via acquisition of CNAs comparable to those of IGC, contributing to field cancerization.
Collapse
Affiliation(s)
- Ken Kumagai
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Atsushi Takai
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | - Haruhiko Takeda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Aya Mizuguchi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Mari Teramura
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Takahiko Ito
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | | | - Yuji Eso
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken Takahashi
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yoshihide Ueda
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | | | - Kazutaka Obama
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Hiroshi Seno
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Kanchan K, Iyer K, Yanek LR, Carcamo-Orive I, Taub MA, Malley C, Baldwin K, Becker LC, Broeckel U, Cheng L, Cowan C, D'Antonio M, Frazer KA, Quertermous T, Mostoslavsky G, Murphy G, Rabinovitch M, Rader DJ, Steinberg MH, Topol E, Yang W, Knowles JW, Jaquish CE, Ruczinski I, Mathias RA. Genomic integrity of human induced pluripotent stem cells across nine studies in the NHLBI NextGen program. Stem Cell Res 2020; 46:101803. [PMID: 32442913 PMCID: PMC7575060 DOI: 10.1016/j.scr.2020.101803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) lines have previously been generated through the NHLBI sponsored NextGen program at nine individual study sites. Here, we examined the structural integrity of 506 hiPSC lines as determined by copy number variations (CNVs). We observed that 149 hiPSC lines acquired 258 CNVs relative to donor DNA. We identified six recurrent regions of CNVs on chromosomes 1, 2, 3, 16 and 20 that overlapped with cancer associated genes. Furthermore, the genes mapping to regions of acquired CNVs show an enrichment in cancer related biological processes (IL6 production) and signaling cascades (JNK cascade & NFκB cascade). The genomic region of instability on chr20 (chr20q11.2) includes transcriptomic signatures for cancer associated genes such as ID1, BCL2L1, TPX2, PDRG1 and HCK. Of these HCK shows statistically significant differential expression between carrier and non-carrier hiPSC lines. Overall, while a low level of genomic instability was observed in the NextGen generated hiPSC lines, the observation of structural instability in regions with known cancer associated genes substantiates the importance of systematic evaluation of genetic variations in hiPSCs before using them as disease/research models.
Collapse
Affiliation(s)
- Kanika Kanchan
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kruthika Iyer
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lisa R Yanek
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ivan Carcamo-Orive
- Department of Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Margaret A Taub
- Department of Biostatistics, Bloomberg School of Public health, Johns Hopkins University, Baltimore, MD, USA
| | - Claire Malley
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kristin Baldwin
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lewis C Becker
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ulrich Broeckel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Linzhao Cheng
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chad Cowan
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Matteo D'Antonio
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kelly A Frazer
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Thomas Quertermous
- Department of Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Gustavo Mostoslavsky
- The Center for Regenerative Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - George Murphy
- The Center for Regenerative Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Marlene Rabinovitch
- Department of Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University, School of Medicine, Stanford, CA, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin H Steinberg
- Department of Medicine, Section of Hematology-Oncology, Boston University School of Medicine, Boston, MA, USA
| | - Eric Topol
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wenli Yang
- Penn Center for Pulmonary Biology and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua W Knowles
- Department of Medicine, Cardiovascular Institute and Diabetes Research Center, Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public health, Johns Hopkins University, Baltimore, MD, USA
| | - Rasika A Mathias
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
3
|
Cronise KE, Hernandez BG, Gustafson DL, Duval DL. Identifying the ErbB/MAPK Signaling Cascade as a Therapeutic Target in Canine Bladder Cancer. Mol Pharmacol 2019; 96:36-46. [PMID: 31048548 DOI: 10.1124/mol.119.115808] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/27/2019] [Indexed: 12/19/2022] Open
Abstract
Transitional cell carcinoma (TCC) of the bladder comprises 2% of diagnosed canine cancers. TCC tumors are generally inoperable and unresponsive to traditional chemotherapy, indicating a need for more effective therapies. BRAF, a kinase in the mitogen-activated protein kinase (MAPK) pathway, is mutated in 70% of canine TCCs. In this study, we use BRAF mutant and wild-type TCC cell lines to characterize the role of BRAF mutations in TCC pathogenesis and assess the efficacy of inhibition of the MAPK pathway alone and in combination with other gene targets as a treatment for canine TCC. Analysis of MAPK target gene expression and assessment of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation following serum starvation indicated constitutive MAPK activity in all TCC cell lines. BRAF mutant TCC cell lines were insensitive to the BRAF inhibitor vemurafenib, with IC50 values greater than 5 μM, but exhibited greater sensitivity to a paradox-breaking BRAF inhibitor (IC50: 0.2-1 μM). All TCC cell lines had IC50 values less than 7 nM to the mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor trametinib independent of their BRAF mutation status. ERK1/2 phosphorylation decreased after 6-hour treatments with MAPK inhibitors, but rebounded by 24 hours, suggesting the presence of resistance mechanisms. Microarray analysis identified elevated expression of the ErbB family of receptors and ligands in TCC cell lines. The pan-ErbB inhibitor sapitinib synergized with BRAF inhibition in BRAF mutant Bliley TCC cells and synergized with MEK1/2 inhibition in Bliley and BRAF wild-type Kinsey cells. These findings suggest the potential for combined MAPK and ErbB receptor inhibition as a therapy for canine TCC. SIGNIFICANCE STATEMENT: The results of this study (1) identify a novel combination strategy for canine bladder cancer treatment: targeting the ErbB/MAPK signaling cascade and (2) establish the utility of canine bladder cancer as a naturally-occurring model for human MAPK-driven cancers.
Collapse
Affiliation(s)
- Kathryn E Cronise
- Flint Animal Cancer Center, Department of Clinical Sciences (K.E.C., B.G.H., D.L.G., D.L.D.), and Cell and Molecular Biology Graduate Program (K.E.C., D.L.G., D.L.D.), Colorado State University, Fort Collins, Colorado; and University of Colorado Cancer Center, Aurora, Colorado (D.L.G., D.L.D.)
| | - Belen G Hernandez
- Flint Animal Cancer Center, Department of Clinical Sciences (K.E.C., B.G.H., D.L.G., D.L.D.), and Cell and Molecular Biology Graduate Program (K.E.C., D.L.G., D.L.D.), Colorado State University, Fort Collins, Colorado; and University of Colorado Cancer Center, Aurora, Colorado (D.L.G., D.L.D.)
| | - Daniel L Gustafson
- Flint Animal Cancer Center, Department of Clinical Sciences (K.E.C., B.G.H., D.L.G., D.L.D.), and Cell and Molecular Biology Graduate Program (K.E.C., D.L.G., D.L.D.), Colorado State University, Fort Collins, Colorado; and University of Colorado Cancer Center, Aurora, Colorado (D.L.G., D.L.D.)
| | - Dawn L Duval
- Flint Animal Cancer Center, Department of Clinical Sciences (K.E.C., B.G.H., D.L.G., D.L.D.), and Cell and Molecular Biology Graduate Program (K.E.C., D.L.G., D.L.D.), Colorado State University, Fort Collins, Colorado; and University of Colorado Cancer Center, Aurora, Colorado (D.L.G., D.L.D.)
| |
Collapse
|
4
|
Strbenac D, Zhong L, Raftery MJ, Wang P, Wilson SR, Armstrong NJ, Yang JYH. Quantitative Performance Evaluator for Proteomics (QPEP): Web-based Application for Reproducible Evaluation of Proteomics Preprocessing Methods. J Proteome Res 2017; 16:2359-2369. [DOI: 10.1021/acs.jproteome.6b00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Dario Strbenac
- School
of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ling Zhong
- Bioanalytical
Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mark J. Raftery
- Bioanalytical
Mass Spectrometry Facility, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Penghao Wang
- School
of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Susan R. Wilson
- School of Mathematics & Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
- Centre
for Mathematics and its Applications, Mathematical Sciences Institute, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Nicola J. Armstrong
- School
of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jean Y. H. Yang
- School
of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
5
|
Wang B, Ji T, Zhou X, Wang J, Wang X, Wang J, Zhu D, Zhang X, Sham PC, Zhang X, Ma X, Jiang Y. CNV analysis in Chinese children of mental retardation highlights a sex differentiation in parental contribution to de novo and inherited mutational burdens. Sci Rep 2016; 6:25954. [PMID: 27257017 PMCID: PMC4891738 DOI: 10.1038/srep25954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/06/2016] [Indexed: 12/28/2022] Open
Abstract
Rare copy number variations (CNVs) are a known genetic etiology in neurodevelopmental disorders (NDD). Comprehensive CNV analysis was performed in 287 Chinese children with mental retardation and/or development delay (MR/DD) and their unaffected parents. When compared with 5,866 ancestry-matched controls, 11~12% more MR/DD children carried rare and large CNVs. The increased CNV burden in MR/DD was predominantly due to de novo CNVs, the majority of which (62%) arose in the paternal germline. We observed a 2~3 fold increase of large CNV burden in the mothers of affected children. By implementing an evidence-based review approach, pathogenic structural variants were identified in 14.3% patients and 2.4% parents, respectively. Pathogenic CNVs in parents were all carried by mothers. The maternal transmission bias of deleterious CNVs was further replicated in a published dataset. Our study confirms the pathogenic role of rare CNVs in MR/DD, and provides additional evidence to evaluate the dosage sensitivity of some candidate genes. It also supports a population model of MR/DD that spontaneous mutations in males' germline are major contributor to the de novo mutational burden in offspring, with higher penetrance in male than female; unaffected carriers of causative mutations, mostly females, then contribute to the inherited mutational burden.
Collapse
Affiliation(s)
- Binbin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,National Research Institute of Family Planning, Beijing, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xueya Zhou
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, China.,Department of Psychiatry and Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jing Wang
- Department of Medical Genetics, The Capital Medical University, Beijing, China
| | - Xi Wang
- National Research Institute of Family Planning, Beijing, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology at No.1 Hospital, Anhui Medical University, Heifei, Anhui, China
| | - Pak Chung Sham
- Department of Psychiatry and Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing, China
| | - Xu Ma
- National Research Institute of Family Planning, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Bodelon C, Vinokurova S, Sampson JN, den Boon JA, Walker JL, Horswill MA, Korthauer K, Schiffman M, Sherman ME, Zuna RE, Mitchell J, Zhang X, Boland JF, Chaturvedi AK, Dunn ST, Newton MA, Ahlquist P, Wang SS, Wentzensen N. Chromosomal copy number alterations and HPV integration in cervical precancer and invasive cancer. Carcinogenesis 2015; 37:188-196. [PMID: 26660085 DOI: 10.1093/carcin/bgv171] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 11/07/2015] [Indexed: 11/14/2022] Open
Affiliation(s)
- Clara Bodelon
- Division of Cancer Epidemiology and Genetics , National Cancer Institute , NIH , Bethesda, MD,USA
| | - Svetlana Vinokurova
- Institute of Carcinogenesis , NN Blokhin Cancer Research Center , Moscow , Russia
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics , National Cancer Institute , NIH , Bethesda, MD,USA
| | - Johan A den Boon
- Morgridge Institute for Research.,McArdle Laboratory for Cancer Research and.,Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joan L Walker
- University of Oklahoma Health Sciences Center , Oklahoma City, OK,USA
| | - Mark A Horswill
- Morgridge Institute for Research.,Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Keegan Korthauer
- Departments of Statistics and of Biostatistics and Medical Informatics , University of Wisconsin-Madison , Madison, WI,USA
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics , National Cancer Institute , NIH , Bethesda, MD,USA
| | - Mark E Sherman
- Division of Cancer Prevention, Breast and Gynecologic Cancer Research Group, National Cancer Institute, NIH , Bethesda, MD , USA
| | - Rosemary E Zuna
- University of Oklahoma Health Sciences Center , Oklahoma City, OK,USA
| | - Jason Mitchell
- Division of Cancer Epidemiology and Genetics , National Cancer Institute , NIH , Bethesda, MD,USA
| | - Xijun Zhang
- Division of Cancer Epidemiology and Genetics , National Cancer Institute , NIH , Bethesda, MD,USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics , National Cancer Institute , NIH , Bethesda, MD,USA
| | - Anil K Chaturvedi
- Division of Cancer Epidemiology and Genetics , National Cancer Institute , NIH , Bethesda, MD,USA
| | - S Terence Dunn
- University of Oklahoma Health Sciences Center , Oklahoma City, OK,USA
| | - Michael A Newton
- Departments of Statistics and of Biostatistics and Medical Informatics , University of Wisconsin-Madison , Madison, WI,USA
| | - Paul Ahlquist
- Morgridge Institute for Research.,McArdle Laboratory for Cancer Research and.,Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA.,Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA, and
| | - Sophia S Wang
- Division of Cancer Etiology, Department of Population Sciences, Beckman Research Institute , City of Hope, Duarte, CA,USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics , National Cancer Institute , NIH , Bethesda, MD,USA
| |
Collapse
|
7
|
Mishra R, Hegner M. Effect of non-specific species competition from total RNA on the static mode hybridization response of nanomechanical assays of oligonucleotides. NANOTECHNOLOGY 2014; 25:225501. [PMID: 24807191 DOI: 10.1088/0957-4484/25/22/225501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigate here the nanomechanical response of microcantilever sensors in real-time for detecting a range of ultra-low concentrations of oligonucleotides in a complex background of total cellular RNA extracts from cell lines without labeling or amplification. Cantilever sensor arrays were functionalized with probe single stranded DNA (ssDNA) and reference ssDNA to obtain a differential signal. They were then exposed to complementary target ssDNA strands that were spiked in a fragmented total cellular RNA background in biologically relevant concentrations so as to provide clinically significant analysis. We present a model for prediction of the sensor behavior in competitive backgrounds with parameters that are indicators of the change in nanomechanical response with variation in the target and background concentration. For nanomechanical assays to compete with current technologies it is essential to comprehend such responses with eventual impact on areas like understanding non-coding RNA pharmacokinetics, nucleic acid biomarker assays and miRNA quantification for disease monitoring and diagnosis to mention a few. Additionally, we also achieved a femtomolar sensitivity limit for online oligonucleotide detection in a non-competitive environment with these sensors.
Collapse
Affiliation(s)
- Rohit Mishra
- Centre for Research on Adaptive Nanostructures and Nanodevices, School of Physics, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
8
|
Kazama Y, Hirano T, Nishihara K, Ohbu S, Shirakawa Y, Abe T. Effect of high-LET Fe-ion beam irradiation on mutation induction in Arabidopsis thaliana. Genes Genet Syst 2014; 88:189-97. [PMID: 24025247 DOI: 10.1266/ggs.88.189] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Heavy-ion beams are powerful mutagens. They cause a broad spectrum of mutation phenotypes with high efficiency even at low irradiation doses and short irradiation times. These mutagenic effects are due to dense ionisation in a localised region along the ion particle path. Linear energy transfer (LET; keV·μm(-1)), which represents the degree of locally deposited energy, is an important parameter in heavy-ion mutagenesis. For high LET radiation above 290 keV∙μm(-1), however, neither the mutation frequency nor the molecular nature of the mutations has been fully characterised. In this study, we investigated the effect of Fe-ion beams with an LET of 640 keV∙μm(-1) on both the mutation frequency and the molecular nature of the mutations. Screening of well-characterised mutants (hy and gl) revealed that the mutation frequency was lower than any other ion species with low LET. We investigated the resulting mutations in the 4 identified mutants. Three mutants were examined by employing PCR-based methods, one of which had 2-bp deletion, another had 178 bp of tandemly duplication, and other one had complicated chromosomal rearrangements with variable deletions in size at breakpoints. We also detected large deletions in the other mutant by using array comparative genomic hybridisation. From the results of the analysis of the breakpoints and junctions of the detected deletions, it was revealed that the mutants harboured chromosomal rearrangements in their genomes. These results indicate that Fe-ion irradiation tends to cause complex mutations with low efficiency. We conclude that Fe-ion irradiation could be useful for inducing chromosomal rearrangements or large deletions.
Collapse
|
9
|
Halper-Stromberg E, Steranka J, Burns KH, Sabunciyan S, Irizarry RA. Visualization and probability-based scoring of structural variants within repetitive sequences. ACTA ACUST UNITED AC 2014; 30:1514-21. [PMID: 24501098 PMCID: PMC4029030 DOI: 10.1093/bioinformatics/btu054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MOTIVATION Repetitive sequences account for approximately half of the human genome. Accurately ascertaining sequences in these regions with next generation sequencers is challenging, and requires a different set of analytical techniques than for reads originating from unique sequences. Complicating the matter are repetitive regions subject to programmed rearrangements, as is the case with the antigen-binding domains in the Immunoglobulin (Ig) and T-cell receptor (TCR) loci. RESULTS We developed a probability-based score and visualization method to aid in distinguishing true structural variants from alignment artifacts. We demonstrate the usefulness of this method in its ability to separate real structural variants from false positives generated with existing upstream analysis tools. We validated our approach using both target-capture and whole-genome experiments. Capture sequencing reads were generated from primary lymphoid tumors, cancer cell lines and an EBV-transformed lymphoblast cell line over the Ig and TCR loci. Whole-genome sequencing reads were from a lymphoblastoid cell-line. AVAILABILITY We implement our method as an R package available at https://github.com/Eitan177/targetSeqView. Code to reproduce the figures and results are also available.
Collapse
Affiliation(s)
- Eitan Halper-Stromberg
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Department of Pathology, Johns Hopkins University, High Throughput Biology Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Center for Epigenetics, Johns Hopkins University School of Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD and Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, MA, USADepartment of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Department of Pathology, Johns Hopkins University, High Throughput Biology Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Center for Epigenetics, Johns Hopkins University School of Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD and Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, MA, USADepartment of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Cente
| | - Jared Steranka
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Department of Pathology, Johns Hopkins University, High Throughput Biology Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Center for Epigenetics, Johns Hopkins University School of Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD and Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, MA, USA
| | - Kathleen H Burns
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Department of Pathology, Johns Hopkins University, High Throughput Biology Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Center for Epigenetics, Johns Hopkins University School of Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD and Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, MA, USADepartment of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Department of Pathology, Johns Hopkins University, High Throughput Biology Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Center for Epigenetics, Johns Hopkins University School of Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD and Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, MA, USADepartment of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Cente
| | - Sarven Sabunciyan
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Department of Pathology, Johns Hopkins University, High Throughput Biology Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Center for Epigenetics, Johns Hopkins University School of Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD and Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, MA, USADepartment of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Department of Pathology, Johns Hopkins University, High Throughput Biology Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Center for Epigenetics, Johns Hopkins University School of Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD and Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, MA, USA
| | - Rafael A Irizarry
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Department of Pathology, Johns Hopkins University, High Throughput Biology Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Center for Epigenetics, Johns Hopkins University School of Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD and Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, MA, USADepartment of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Program in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Computational Bioscience Program, University of Colorado, Denver, Department of Molecular Biology and Genetics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Department of Pathology, Johns Hopkins University, High Throughput Biology Center, Johns Hopkins University School of Medicine, Johns Hopkins University, Center for Epigenetics, Johns Hopkins University School of Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD and Department of Biostatistics and Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts, MA, USA
| |
Collapse
|
10
|
He W, Sun X, Liu L, Li M, Jin H, Wang WH. The prevalence of chromosomal deletions relating to developmental delay and/or intellectual disability in human euploid blastocysts. PLoS One 2014; 9:e85207. [PMID: 24409323 PMCID: PMC3883698 DOI: 10.1371/journal.pone.0085207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 11/22/2022] Open
Abstract
Chromosomal anomalies in human embryos produced by in vitro fertilization are very common, which include numerical (aneuploidy) and structural (deletion, duplication or others) anomalies. Our previous study indicated that chromosomal deletion(s) is the most common structural anomaly accounting for approximately 8% of euploid blastocysts. It is still unknown if these deletions in human euploid blastocysts have clinical significance. In this study, we analyzed 15 previously diagnosed euploid blastocysts that had chromosomal deletion(s) using Agilent oligonucleotide DNA microarray platform and localized the gene location in each deletion. Then, we used OMIM gene map and phenotype database to investigate if these deletions are related with some important genes that cause genetic diseases, especially developmental delay or intellectual disability. As results, we found that the detectable chromosomal deletion size with Agilent microarray is above 2.38 Mb, while the deletions observed in human blastocysts are between 11.6 to 103 Mb. With OMIM gene map and phenotype database information, we found that deletions can result in loss of 81-464 genes. Out of these genes, 34–149 genes are related with known genetic problems. Furthermore, we found that 5 out of 15 samples lost genes in the deleted region, which were related to developmental delay and/or intellectual disability. In conclusion, our data indicates that all human euploid blastocysts with chromosomal deletion(s) are abnormal and transfer of these embryos may cause birth defects and/or developmental and intellectual disabilities. Therefore, the embryos with chromosomal deletion revealed by DNA microarray should not be transferred to the patients, or further gene map and/or phenotype seeking is necessary before making a final decision.
Collapse
Affiliation(s)
- Wenyin He
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Xiaofang Sun
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangdong, China
| | - Lian Liu
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Man Li
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Hua Jin
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Wei-Hua Wang
- New Houston Health, Houston, Texas, United States of America
- Vivere Health, Franklin, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
11
|
Alonso A, Marsal S, Tortosa R, Canela-Xandri O, Julià A. GStream: improving SNP and CNV coverage on genome-wide association studies. PLoS One 2013; 8:e68822. [PMID: 23844243 PMCID: PMC3700900 DOI: 10.1371/journal.pone.0068822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022] Open
Abstract
We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method.
Collapse
Affiliation(s)
- Arnald Alonso
- Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
- Department of ESAII, Polytechnical University of Catalonia, Barcelona, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Raül Tortosa
- Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Oriol Canela-Xandri
- Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| |
Collapse
|
12
|
Evaluating the repair of DNA derived from formalin-fixed paraffin-embedded tissues prior to genomic profiling by SNP-CGH analysis. J Transl Med 2013; 93:701-10. [PMID: 23568031 DOI: 10.1038/labinvest.2013.54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathology archives contain vast resources of clinical material in the form of formalin-fixed paraffin-embedded (FFPE) tissue samples. Owing to the methods of tissue fixation and storage, the integrity of DNA and RNA available from FFPE tissue is compromized, which means obtaining informative data regarding epigenetic, genomic, and expression alterations can be challenging. Here, we have investigated the utility of repairing damaged DNA derived from FFPE tumors prior to single-nucleotide polymorphism (SNP) arrays for whole-genome DNA copy number analysis. DNA was extracted from FFPE samples spanning five decades, involving tumor material obtained from surgical specimens and postmortems. Various aspects of the protocol were assessed, including the method of DNA extraction, the role of Quality Control quantitative PCR (qPCR) in predicting sample success, and the effect of DNA restoration on assay performance, data quality, and the prediction of copy number aberrations (CNAs). DNA that had undergone the repair process yielded higher SNP call rates, reduced log R ratio variance, and improved calling of CNAs compared with matched FFPE DNA not subjected to repair. Reproducible mapping of genomic break points and detection of focal CNAs representing high-level gains and homozygous deletions (HD) were possible, even on autopsy material obtained in 1974. For example, DNA amplifications at the ERBB2 and EGFR gene loci and a HD mapping to 13q14.2 were validated using immunohistochemistry, in situ hybridization, and qPCR. The power of SNP arrays lies in the detection of allele-specific aberrations; however, this aspect of the analysis remains challenging, particularly in the distinction between loss of heterozygosity (LOH) and copy neutral LOH. In summary, attempting to repair DNA that is damaged during fixation and storage may be a useful pretreatment step for genomic studies of large archival FFPE cohorts with long-term follow-up or for understanding rare cancer types, where fresh frozen material is scarce.
Collapse
|
13
|
Liang L, Wang CT, Sun X, Liu L, Li M, Witz C, Williams D, Griffith J, Skorupski J, Haddad G, Gill J, Wang WH. Identification of chromosomal errors in human preimplantation embryos with oligonucleotide DNA microarray. PLoS One 2013; 8:e61838. [PMID: 23613950 PMCID: PMC3628862 DOI: 10.1371/journal.pone.0061838] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
A previous study comparing the performance of different platforms for DNA microarray found that the oligonucleotide (oligo) microarray platform containing 385K isothermal probes had the best performance when evaluating dosage sensitivity, precision, specificity, sensitivity and copy number variations border definition. Although oligo microarray platform has been used in some research fields and clinics, it has not been used for aneuploidy screening in human embryos. The present study was designed to use this new microarray platform for preimplantation genetic screening in the human. A total of 383 blastocysts from 72 infertility patients with either advanced maternal age or with previous miscarriage were analyzed after biopsy and microarray. Euploid blastocysts were transferred to patients and clinical pregnancy and implantation rates were measured. Chromosomes in some aneuploid blastocysts were further analyzed by fluorescence in-situ hybridization (FISH) to evaluate accuracy of the results. We found that most (58.1%) of the blastocysts had chromosomal abnormalities that included single or multiple gains and/or losses of chromosome(s), partial chromosome deletions and/or duplications in both euploid and aneuploid embryos. Transfer of normal euploid blastocysts in 34 cycles resulted in 58.8% clinical pregnancy and 54.4% implantation rates. Examination of abnormal blastocysts by FISH showed that all embryos had matching results comparing microarray and FISH analysis. The present study indicates that oligo microarray conducted with a higher resolution and a greater number of probes is able to detect not only aneuploidy, but also minor chromosomal abnormalities, such as partial chromosome deletion and/or duplication in human embryos. Preimplantation genetic screening of the aneuploidy by DNA microarray is an advanced technology used to select embryos for transfer and improved embryo implantation can be obtained after transfer of the screened normal embryos.
Collapse
Affiliation(s)
- Lifeng Liang
- Houston Fertility Institute, Houston, Texas, United States of America
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Cassie T. Wang
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Xiaofang Sun
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Hospital Affiliated to Guangzhou Medical University, Guangdong, China
| | - Lian Liu
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Man Li
- Pacgenomics Inc., Village Medical Center, Thousand Oaks, California, United States of America
| | - Craig Witz
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Daniel Williams
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Jason Griffith
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Josh Skorupski
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Ghassan Haddad
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Jimmy Gill
- Houston Fertility Institute, Houston, Texas, United States of America
| | - Wei-Hua Wang
- Houston Fertility Institute, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
14
|
Banerjee D. Array comparative genomic hybridization: an overview of protocols, applications, and technology trends. Methods Mol Biol 2013; 973:1-13. [PMID: 23412780 DOI: 10.1007/978-1-62703-281-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
From the earliest observations of human chromosomes in the late 1800s to modern day next generation sequencing technologies, much has been learned about human cancers by the vigorous application of the techniques of the day. In general, resolution has improved tremendously, and correspondingly the size of the datasets generated has grown exponentially such that computational methods required to handle massive datasets have had to be devised. This chapter provides a brief synopsis of the evolution of such techniques as an introduction to the subsequent chapters that provide methods and applications, relevant to research, and clinical diagnostics.
Collapse
Affiliation(s)
- Diponkar Banerjee
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, BC, Canada.
| |
Collapse
|
15
|
Scharpf RB, Beaty TH, Schwender H, Younkin SG, Scott AF, Ruczinski I. Fast detection of de novo copy number variants from SNP arrays for case-parent trios. BMC Bioinformatics 2012; 13:330. [PMID: 23234608 PMCID: PMC3576329 DOI: 10.1186/1471-2105-13-330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/07/2012] [Indexed: 11/10/2022] Open
Abstract
Background In studies of case-parent trios, we define copy number variants (CNVs) in the offspring that differ from the parental copy numbers as de novo and of interest for their potential functional role in disease. Among the leading array-based methods for discovery of de novo CNVs in case-parent trios is the joint hidden Markov model (HMM) implemented in the PennCNV software. However, the computational demands of the joint HMM are substantial and the extent to which false positive identifications occur in case-parent trios has not been well described. We evaluate these issues in a study of oral cleft case-parent trios. Results Our analysis of the oral cleft trios reveals that genomic waves represent a substantial source of false positive identifications in the joint HMM, despite a wave-correction implementation in PennCNV. In addition, the noise of low-level summaries of relative copy number (log R ratios) is strongly associated with batch and correlated with the frequency of de novo CNV calls. Exploiting the trio design, we propose a univariate statistic for relative copy number referred to as the minimum distance that can reduce technical variation from probe effects and genomic waves. We use circular binary segmentation to segment the minimum distance and maximum a posteriori estimation to infer de novo CNVs from the segmented genome. Compared to PennCNV on simulated data, MinimumDistance identifies fewer false positives on average and is comparable to PennCNV with respect to false negatives. Genomic waves contribute to discordance of PennCNV and MinimumDistance for high coverage de novo calls, while highly concordant calls on chromosome 22 were validated by quantitative PCR. Computationally, MinimumDistance provides a nearly 8-fold increase in speed relative to the joint HMM in a study of oral cleft trios. Conclusions Our results indicate that batch effects and genomic waves are important considerations for case-parent studies of de novo CNV, and that the minimum distance is an effective statistic for reducing technical variation contributing to false de novo discoveries. Coupled with segmentation and maximum a posteriori estimation, our algorithm compares favorably to the joint HMM with MinimumDistance being much faster.
Collapse
Affiliation(s)
- Robert B Scharpf
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Liu J, Wang W, Sun X, Liu L, Jin H, Li M, Witz C, Williams D, Griffith J, Skorupski J, Haddad G, Gill J. DNA Microarray Reveals That High Proportions of Human Blastocysts from Women of Advanced Maternal Age Are Aneuploid and Mosaic1. Biol Reprod 2012; 87:148. [DOI: 10.1095/biolreprod.112.103192] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
17
|
Zhang YB, Li X, Zhang F, Wang DM, Yu J. A preliminary study of copy number variation in Tibetans. PLoS One 2012; 7:e41768. [PMID: 22844521 PMCID: PMC3402393 DOI: 10.1371/journal.pone.0041768] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/27/2012] [Indexed: 12/15/2022] Open
Abstract
Genetic features of Tibetans have been broadly investigated, but the properties of copy number variation (CNV) have not been well examined. To get a preliminary view of CNV in Tibetans, we scanned 29 Tibetan genomes with the Illumina Human-1 M high-resolution genotyping microarray and identified 139 putative copy number variable regions (CNVRs), consisting of 70 deletions, 61 duplications, and 8 multi-allelic loci. Thirty-four of the 139 CNVRs showed differential allele frequencies versus other East-Asian populations, with P values <0.0001. These results indicated a distinct pattern of CNVR allele frequency distribution in Tibetans. The Tibetan CNVRs are enriched for genes in the disease class of human reproduction (such as genes from the DAZ, BPY2, CDY, and HLA-DQ and -DR gene clusters) and biological process categories of “response to DNA damage stimulus” and “DNA repair” (such as RAD51, RAD52, and MRE11A). These genes are related to the adaptive traits of high infant birth weight and darker skin tone of Tibetans, and may be attributed to recent local adaptation. Our results provide a different view of genetic diversity in Tibetans and new insights into their high-altitude adaptation.
Collapse
Affiliation(s)
- Yong-Biao Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xin Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Feng Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail:
| | - Duen-Mei Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Krijgsman O, Israeli D, Haan JC, van Essen HF, Smeets SJ, Eijk PP, Steenbergen RDM, Kok K, Tejpar S, Meijer GA, Ylstra B. CGH arrays compared for DNA isolated from formalin-fixed, paraffin-embedded material. Genes Chromosomes Cancer 2011; 51:344-52. [PMID: 22162309 DOI: 10.1002/gcc.21920] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/07/2011] [Indexed: 12/13/2022] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) archival tissue is an important source of DNA material. The most commonly used technique to identify copy number aberrations from chromosomal DNA in tumorigenesis is array comparative genomic hybridization (aCGH). Although copy number analysis using DNA from FFPE archival tissue is challenging, several research groups have reported high quality and reproducible DNA copy number results using aCGH. Aim of this study is to compare the commercially available aCGH platforms suitable for high-resolution copy number analysis using FFPE-derived DNA. Two dual channel aCGH platforms (Agilent and NimbleGen) and a single channel SNP-based platform (Affymetrix) were evaluated using seven FFPE colon cancer samples, and median absolute deviation (MAD), deflection, signal-to-noise ratio, and DNA input requirements were used as quality criteria. Large differences were observed between platforms; Agilent and NimbleGen showed better MAD values (0.13 for both) compared with Affymetrix (0.22). On the contrary, Affymetrix showed a better deflection of 0.94, followed by 0.71 for Agilent and 0.51 for NimbleGen. This resulted in signal-to-nose ratios that were comparable between the three commercially available platforms. Interestingly, DNA input amounts from FFPE material lower than recommended still yielded high quality profiles on all platforms. Copy number analysis using DNA derived from FFPE archival material is feasible using all three high-resolution copy number platforms and shows reproducible results, also with DNA input amounts lower than recommended.
Collapse
Affiliation(s)
- Oscar Krijgsman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Castro-Chavez F. Escaping the cut by restriction enzymes through single-strand self-annealing of host-edited 12-bp and longer synthetic palindromes. DNA Cell Biol 2011; 31:151-63. [PMID: 21895510 DOI: 10.1089/dna.2011.1339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Palindromati, the massive host-edited synthetic palindromic contamination found in GenBank, is illustrated and exemplified. Millions of contaminated sequences with portions or tandems of such portions derived from the ZAP adaptor or related linkers are shown (1) by the 12-bp sequence reported elsewhere, exon Xb, 5' CCCGAATTCGGG 3', (2) by a 22-bp related sequence 5' CTCGTGCCGAATTCGGCACGAG 3', and (3) by a longer 44-bp related sequence: 5' CTCGTGCCGAATTCGGCACGAGCTCGTGCCGAATTCGGCACGAG 3'. Possible reasons for why those long contaminating sequences continue in the databases are presented here: (1) the recognition site for the plus strand (+) is single-strand self-annealed; (2) the recognition site for the minus strand (-) is not only single-strand self-annealed but also located far away from the single-strand self-annealed plus strand, rendering impossible the formation of the active EcoRI enzyme dimer to cut on 5' G/AATTC 3', its target sequence. As a possible solution, it is suggested to rely on at least two or three independent results, such as sequences obtained by independent laboratories with the use, preferably, of independent sequencing methodologies. This information may help to develop tools for bioinformatics capable to detect/remove these contaminants and to infer why some damaged sequences which cause genetic diseases escape detection by the molecular quality control mechanism of cells and organisms, being undesirably transferred unchecked through the generations.
Collapse
Affiliation(s)
- Fernando Castro-Chavez
- Atherosclerosis and Vascular Medicine Section, Department of Medicine, Methodist DeBakey Heart Center, Baylor College of Medicine, 6565 Fannin Street,Houston, TX 77030, USA.
| |
Collapse
|