1
|
Pandey AK, Loscalzo J. Network medicine: an approach to complex kidney disease phenotypes. Nat Rev Nephrol 2023:10.1038/s41581-023-00705-0. [PMID: 37041415 DOI: 10.1038/s41581-023-00705-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Scientific reductionism has been the basis of disease classification and understanding for more than a century. However, the reductionist approach of characterizing diseases from a limited set of clinical observations and laboratory evaluations has proven insufficient in the face of an exponential growth in data generated from transcriptomics, proteomics, metabolomics and deep phenotyping. A new systematic method is necessary to organize these datasets and build new definitions of what constitutes a disease that incorporates both biological and environmental factors to more precisely describe the ever-growing complexity of phenotypes and their underlying molecular determinants. Network medicine provides such a conceptual framework to bridge these vast quantities of data while providing an individualized understanding of disease. The modern application of network medicine principles is yielding new insights into the pathobiology of chronic kidney diseases and renovascular disorders by expanding the understanding of pathogenic mediators, novel biomarkers and new options for renal therapeutics. These efforts affirm network medicine as a robust paradigm for elucidating new advances in the diagnosis and treatment of kidney disorders.
Collapse
Affiliation(s)
- Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Fernandez G, Yubero D, Palau F, Armstrong J. Molecular Modelling Hurdle in the Next-Generation Sequencing Era. Int J Mol Sci 2022; 23:7176. [PMID: 35806177 PMCID: PMC9266691 DOI: 10.3390/ijms23137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
There are challenges in the genetic diagnosis of rare diseases, and pursuing an optimal strategy to identify the cause of the disease is one of the main objectives of any clinical genomics unit. A range of techniques are currently used to characterize the genomic variability within the human genome to detect causative variants of specific disorders. With the introduction of next-generation sequencing (NGS) in the clinical setting, geneticists can study single-nucleotide variants (SNVs) throughout the entire exome/genome. In turn, the number of variants to be evaluated per patient has increased significantly, and more information has to be processed and analyzed to determine a proper diagnosis. Roughly 50% of patients with a Mendelian genetic disorder are diagnosed using NGS, but a fair number of patients still suffer a diagnostic odyssey. Due to the inherent diversity of the human population, as more exomes or genomes are sequenced, variants of uncertain significance (VUSs) will increase exponentially. Thus, assigning relevance to a VUS (non-synonymous as well as synonymous) in an undiagnosed patient becomes crucial to assess the proper diagnosis. Multiple algorithms have been used to predict how a specific mutation might affect the protein's function, but they are far from accurate enough to be conclusive. In this work, we highlight the difficulties of genomic variability determined by NGS that have arisen in diagnosing rare genetic diseases, and how molecular modelling has to be a key component to elucidate the relevance of a specific mutation in the protein's loss of function or malfunction. We suggest that the creation of a multi-omics data model should improve the classification of pathogenicity for a significant amount of the detected genomic variability. Moreover, we argue how it should be incorporated systematically in the process of variant evaluation to be useful in the clinical setting and the diagnostic pipeline.
Collapse
Affiliation(s)
- Guerau Fernandez
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
| | - Dèlia Yubero
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
| | - Francesc Palau
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
- Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, 08007 Barcelona, Spain
| | - Judith Armstrong
- Department of Genetic and Molecular Medicine—IPER, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain; (G.F.); (F.P.); (J.A.)
- Center for Biomedical Research Network on Rare Diseases (CIBERER), ISCIII, 08950 Barcelona, Spain
| |
Collapse
|
3
|
Hollander M, Do T, Will T, Helms V. Detecting Rewiring Events in Protein-Protein Interaction Networks Based on Transcriptomic Data. FRONTIERS IN BIOINFORMATICS 2021; 1:724297. [PMID: 36303788 PMCID: PMC9581068 DOI: 10.3389/fbinf.2021.724297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Proteins rarely carry out their cellular functions in isolation. Instead, eukaryotic proteins engage in about six interactions with other proteins on average. The aggregated protein interactome of an organism forms a “hairy ball”-type protein-protein interaction (PPI) network. Yet, in a typical human cell, only about half of all proteins are expressed at a particular time. Hence, it has become common practice to prune the full PPI network to the subset of expressed proteins. If RNAseq data is available, one can further resolve the specific protein isoforms present in a cell or tissue. Here, we review various approaches, software tools and webservices that enable users to construct context-specific or tissue-specific PPI networks and how these are rewired between two cellular conditions. We illustrate their different functionalities on the example of the interactions involving the human TNR6 protein. In an outlook, we describe how PPI networks may be integrated with epigenetic data or with data on the activity of splicing factors.
Collapse
|
4
|
Lee LY, Pandey AK, Maron BA, Loscalzo J. Network medicine in Cardiovascular Research. Cardiovasc Res 2020; 117:2186-2202. [PMID: 33165538 DOI: 10.1093/cvr/cvaa321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/08/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
The ability to generate multi-omics data coupled with deeply characterizing the clinical phenotype of individual patients promises to improve understanding of complex cardiovascular pathobiology. There remains an important disconnection between the magnitude and granularity of these data and our ability to improve phenotype-genotype correlations for complex cardiovascular diseases. This shortcoming may be due to limitations associated with traditional reductionist analytical methods, which tend to emphasize a single molecular event in the pathogenesis of diseases more aptly characterized by crosstalk between overlapping molecular pathways. Network medicine is a rapidly growing discipline that considers diseases as the consequences of perturbed interactions between multiple interconnected biological components. This powerful integrative approach has enabled a number of important discoveries in complex disease mechanisms. In this review, we introduce the basic concepts of network medicine and highlight specific examples by which this approach has accelerated cardiovascular research. We also review how network medicine is well-positioned to promote rational drug design for patients with cardiovascular diseases, with particular emphasis on advancing precision medicine.
Collapse
Affiliation(s)
- Laurel Y Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.,Department of Cardiology, Boston VA Healthcare System, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
5
|
Gysi DM, Nowick K. Construction, comparison and evolution of networks in life sciences and other disciplines. J R Soc Interface 2020; 17:20190610. [PMID: 32370689 PMCID: PMC7276545 DOI: 10.1098/rsif.2019.0610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Network approaches have become pervasive in many research fields. They allow for a more comprehensive understanding of complex relationships between entities as well as their group-level properties and dynamics. Many networks change over time, be it within seconds or millions of years, depending on the nature of the network. Our focus will be on comparative network analyses in life sciences, where deciphering temporal network changes is a core interest of molecular, ecological, neuropsychological and evolutionary biologists. Further, we will take a journey through different disciplines, such as social sciences, finance and computational gastronomy, to present commonalities and differences in how networks change and can be analysed. Finally, we envision how borrowing ideas from these disciplines could enrich the future of life science research.
Collapse
Affiliation(s)
- Deisy Morselli Gysi
- Department of Computer Science, Interdisciplinary Center of Bioinformatics, University of Leipzig, 04109 Leipzig, Germany
- Swarm Intelligence and Complex Systems Group, Faculty of Mathematics and Computer Science, University of Leipzig, 04109 Leipzig, Germany
- Center for Complex Networks Research, Northeastern University, 177 Huntington Avenue, Boston, MA 02115, USA
| | - Katja Nowick
- Human Biology Group, Institute for Biology, Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Königin-Luise-Straβe 1-3, 14195 Berlin, Germany
| |
Collapse
|
6
|
Biological Network Approaches and Applications in Rare Disease Studies. Genes (Basel) 2019; 10:genes10100797. [PMID: 31614842 PMCID: PMC6827097 DOI: 10.3390/genes10100797] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
Network biology has the capability to integrate, represent, interpret, and model complex biological systems by collectively accommodating biological omics data, biological interactions and associations, graph theory, statistical measures, and visualizations. Biological networks have recently been shown to be very useful for studies that decipher biological mechanisms and disease etiologies and for studies that predict therapeutic responses, at both the molecular and system levels. In this review, we briefly summarize the general framework of biological network studies, including data resources, network construction methods, statistical measures, network topological properties, and visualization tools. We also introduce several recent biological network applications and methods for the studies of rare diseases.
Collapse
|
7
|
Ryaboshapkina M, Hammar M. Tissue-specific genes as an underutilized resource in drug discovery. Sci Rep 2019; 9:7233. [PMID: 31076736 PMCID: PMC6510781 DOI: 10.1038/s41598-019-43829-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/01/2019] [Indexed: 12/25/2022] Open
Abstract
Tissue-specific genes are believed to be good drug targets due to improved safety. Here we show that this intuitive notion is not reflected in phase 1 and 2 clinical trials, despite the historic success of tissue-specific targets and their 2.3-fold overrepresentation among targets of marketed non-oncology drugs. We compare properties of tissue-specific genes and drug targets. We show that tissue-specificity of the target may also be related to efficacy of the drug. The relationship may be indirect (enrichment in Mendelian disease and PTVesc genes) or direct (elevated betweenness centrality scores for tissue-specifically produced enzymes and secreted proteins). Reduced evolutionary conservation of tissue-specific genes may represent a bottleneck for drug projects, prompting development of novel models with smaller evolutionary gap to humans. We show that the opportunities to identify tissue-specific drug targets are not exhausted and discuss potential use cases for tissue-specific genes in drug research.
Collapse
Affiliation(s)
- Maria Ryaboshapkina
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Mårten Hammar
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
8
|
Dereli Eke E, Arga KY, Dikicioglu D, Eraslan S, Erkol E, Celik A, Kirdar B, Di Camillo B. Identification of Novel Components of Target-of-Rapamycin Signaling Pathway by Network-Based Multi-Omics Integrative Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:274-284. [PMID: 30985253 DOI: 10.1089/omi.2019.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Target of rapamycin (TOR) is a major signaling pathway and regulator of cell growth. TOR serves as a hub of many signaling routes, and is implicated in the pathophysiology of numerous human diseases, including cancer, diabetes, and neurodegeneration. Therefore, elucidation of unknown components of TOR signaling that could serve as potential biomarkers and drug targets has a great clinical importance. In this study, our aim is to integrate transcriptomics, interactomics, and regulomics data in Saccharomyces cerevisiae using a network-based multiomics approach to enlighten previously unidentified, potential components of TOR signaling. We constructed the TOR-signaling protein interaction network, which was used as a template to search for TOR-mediated rapamycin and caffeine signaling paths. We scored the paths passing from at least one component of TOR Complex 1 or 2 (TORC1/TORC2) using the co-expression levels of the genes in the transcriptome data of the cells grown in the presence of rapamycin or caffeine. The resultant network revealed seven hitherto unannotated proteins, namely, Atg14p, Rim20p, Ret2p, Spt21p, Ylr257wp, Ymr295cp, and Ygr017wp, as potential components of TOR-mediated rapamycin and caffeine signaling in yeast. Among these proteins, we suggest further deciphering of the role of Ylr257wp will be particularly informative in the future because it was the only protein whose removal from the constructed network hindered the signal transduction to the TORC1 effector kinase Npr1p. In conclusion, this study underlines the value of network-based multiomics integrative data analysis in discovering previously unidentified components of the signaling networks by revealing potential components of TOR signaling for future experimental validation.
Collapse
Affiliation(s)
- Elif Dereli Eke
- 1 Department of Information Engineering, University of Padua, Padua, Italy
- 2 Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- 3 Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Duygu Dikicioglu
- 2 Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
- 4 Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Serpil Eraslan
- 2 Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
- 5 Diagnostic Centre for Genetic Diseases, Koc University Hospital, Istanbul, Turkey
| | - Emir Erkol
- 6 Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Arzu Celik
- 6 Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | - Betul Kirdar
- 2 Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Barbara Di Camillo
- 1 Department of Information Engineering, University of Padua, Padua, Italy
| |
Collapse
|
9
|
Neurogenetic contributions to amyloid beta and tau spreading in the human cortex. Nat Med 2018; 24:1910-1918. [PMID: 30374196 DOI: 10.1038/s41591-018-0206-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
Tau and amyloid beta (Aβ) proteins accumulate along neuronal circuits in Alzheimer's disease. Unraveling the genetic background for the regional vulnerability of these proteinopathies can help in understanding the mechanisms of pathology progression. To that end, we developed a novel graph theory approach and used it to investigate the intersection of longitudinal Aβ and tau positron emission tomography imaging of healthy adult individuals and the genetic transcriptome of the Allen Human Brain Atlas. We identified distinctive pathways for tau and Aβ accumulation, of which the tau pathways correlated with cognitive levels. We found that tau propagation and Aβ propagation patterns were associated with a common genetic profile related to lipid metabolism, in which APOE played a central role, whereas the tau-specific genetic profile was classified as 'axon related' and the Aβ profile as 'dendrite related'. This study reveals distinct genetic profiles that may confer vulnerability to tau and Aβ in vivo propagation in the human brain.
Collapse
|
10
|
Abstract
Motivation Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Results Here, we present OhmNet, a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Availability and implementation Source code and datasets are available at http://snap.stanford.edu/ohmnet.
Collapse
Affiliation(s)
- Marinka Zitnik
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
ATLANTIS - Attractor Landscape Analysis Toolbox for Cell Fate Discovery and Reprogramming. Sci Rep 2018; 8:3554. [PMID: 29476134 PMCID: PMC5824948 DOI: 10.1038/s41598-018-22031-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/15/2018] [Indexed: 12/14/2022] Open
Abstract
Boolean modelling of biological networks is a well-established technique for abstracting dynamical biomolecular regulation in cells. Specifically, decoding linkages between salient regulatory network states and corresponding cell fate outcomes can help uncover pathological foundations of diseases such as cancer. Attractor landscape analysis is one such methodology which converts complex network behavior into a landscape of network states wherein each state is represented by propensity of its occurrence. Towards undertaking attractor landscape analysis of Boolean networks, we propose an Attractor Landscape Analysis Toolbox (ATLANTIS) for cell fate discovery, from biomolecular networks, and reprogramming upon network perturbation. ATLANTIS can be employed to perform both deterministic and probabilistic analyses. It has been validated by successfully reconstructing attractor landscapes from several published case studies followed by reprogramming of cell fates upon therapeutic treatment of network. Additionally, the biomolecular network of HCT-116 colorectal cancer cell line has been screened for therapeutic evaluation of drug-targets. Our results show agreement between therapeutic efficacies reported by ATLANTIS and the published literature. These case studies sufficiently highlight the in silico cell fate prediction and therapeutic screening potential of the toolbox. Lastly, ATLANTIS can also help guide single or combinatorial therapy responses towards reprogramming biomolecular networks to recover cell fates.
Collapse
|
12
|
Will T, Helms V. Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare. BMC SYSTEMS BIOLOGY 2017; 11:44. [PMID: 28376810 PMCID: PMC5379774 DOI: 10.1186/s12918-017-0400-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. RESULTS Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. CONCLUSIONS Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .
Collapse
Affiliation(s)
- Thorsten Will
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
- Graduate School of Computer Science, Saarland University, Campus E1.3, Saarbrücken, 66123 Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
| |
Collapse
|
13
|
Alanis-Lobato G, Andrade-Navarro MA, Schaefer MH. HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res 2016; 45:D408-D414. [PMID: 27794551 PMCID: PMC5210659 DOI: 10.1093/nar/gkw985] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/28/2016] [Accepted: 10/14/2016] [Indexed: 01/01/2023] Open
Abstract
The increasing number of experimentally detected interactions between proteins makes it difficult for researchers to extract the interactions relevant for specific biological processes or diseases. This makes it necessary to accompany the large-scale detection of protein–protein interactions (PPIs) with strategies and tools to generate meaningful PPI subnetworks. To this end, we generated the Human Integrated Protein–Protein Interaction rEference or HIPPIE (http://cbdm.uni-mainz.de/hippie/). HIPPIE is a one-stop resource for the generation and interpretation of PPI networks relevant to a specific research question. We provide means to generate highly reliable, context-specific PPI networks and to make sense out of them. We just released the second major update of HIPPIE, implementing various new features. HIPPIE grew substantially over the last years and now contains more than 270 000 confidence scored and annotated PPIs. We integrated different types of experimental information for the confidence scoring and the construction of context-specific networks. We implemented basic graph algorithms that highlight important proteins and interactions. HIPPIE's graphical interface implements several ways for wet lab and computational scientists alike to access the PPI data.
Collapse
Affiliation(s)
- Gregorio Alanis-Lobato
- Faculty of Biology, Johannes Gutenberg Universität, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg Universität, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Martin H Schaefer
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
14
|
Piñero J, Berenstein A, Gonzalez-Perez A, Chernomoretz A, Furlong LI. Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing. Sci Rep 2016; 6:24570. [PMID: 27080396 PMCID: PMC4832203 DOI: 10.1038/srep24570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 03/31/2016] [Indexed: 12/25/2022] Open
Abstract
Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules.
Collapse
Affiliation(s)
- Janet Piñero
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Pompeu Fabra University (UPF). C/Dr. Aiguader, 88. 08003- Barcelona, Spain
| | - Ariel Berenstein
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
| | - Abel Gonzalez-Perez
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Pompeu Fabra University (UPF). C/Dr. Aiguader, 88. 08003- Barcelona, Spain
| | - Ariel Chernomoretz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas. Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.,Laboratorio de Biología de Sistemas Integrativa, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Laura I Furlong
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Pompeu Fabra University (UPF). C/Dr. Aiguader, 88. 08003- Barcelona, Spain
| |
Collapse
|
15
|
Investigating the impact human protein–protein interaction networks have on disease-gene analysis. INT J MACH LEARN CYB 2016. [DOI: 10.1007/s13042-016-0503-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I. Fundamentals of protein interaction network mapping. Mol Syst Biol 2015; 11:848. [PMID: 26681426 PMCID: PMC4704491 DOI: 10.15252/msb.20156351] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studying protein interaction networks of all proteins in an organism (“interactomes”) remains one of the major challenges in modern biomedicine. Such information is crucial to understanding cellular pathways and developing effective therapies for the treatment of human diseases. Over the past two decades, diverse biochemical, genetic, and cell biological methods have been developed to map interactomes. In this review, we highlight basic principles of interactome mapping. Specifically, we discuss the strengths and weaknesses of individual assays, how to select a method appropriate for the problem being studied, and provide general guidelines for carrying out the necessary follow‐up analyses. In addition, we discuss computational methods to predict, map, and visualize interactomes, and provide a summary of some of the most important interactome resources. We hope that this review serves as both a useful overview of the field and a guide to help more scientists actively employ these powerful approaches in their research.
Collapse
Affiliation(s)
- Jamie Snider
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Center, IBM Life Sciences Discovery Centre, University Health Network, Ontario, Canada
| | - Punit Saraon
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Zhong Yao
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Center, IBM Life Sciences Discovery Centre, University Health Network, Ontario, Canada
| | - Igor Stagljar
- Donnelly Centre, Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Gershon ES, Alliey-Rodriguez N, Grennan K. Ethical and public policy challenges for pharmacogenomics. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25733960 PMCID: PMC4336925 DOI: 10.31887/dcns.2014.16.4/egershon] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is timely to consider the ethical and social questions raised by progress in pharmacogenomics, based on the current importance of pharmacogenomics for avoidance of predictable side effects of drugs, and for correct choice of medications in certain cancers. It has been proposed that the entire population be genotyped for drug-metabolizing enzyme polymorphisms, as a measure that would prevent many untoward and dangerous drug reactions. Pharmacologic treatment targeting based on genomics of disease can be expected to increase greatly in the coming years. Policy and ethical issues exist on consent for large-scale genomic pharmacogenomic data collection, public vs corporate ownership of genomic research results, testing efficacy and safety of drugs used for rare genomic indications, and accessibility of treatments based on costly research that is applicable to relatively few patients. In major psychiatric disorders and intellectual deficiency, rare and de novo deletion or duplication of chromosomal segments (copy number variation), in the aggregate, are common causes of increased risk. This implies that the policy problems of pharmacogenomics will be particularly important for the psychiatric disorders.
Collapse
Affiliation(s)
- Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience; Department of Human Genetics; University of Chicago, Illinois, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience; University of Chicago, Illinois, USA
| | - Kay Grennan
- Department of Psychiatry and Behavioral Neuroscience; University of Chicago, Illinois, USA
| |
Collapse
|
18
|
Kotlyar M, Pastrello C, Sheahan N, Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res 2015; 44:D536-41. [PMID: 26516188 PMCID: PMC4702811 DOI: 10.1093/nar/gkv1115] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/13/2015] [Indexed: 01/28/2023] Open
Abstract
IID (Integrated Interactions Database) is the first database providing tissue-specific protein–protein interactions (PPIs) for model organisms and human. IID covers six species (S. cerevisiae (yeast), C. elegans (worm), D. melonogaster (fly), R. norvegicus (rat), M. musculus (mouse) and H. sapiens (human)) and up to 30 tissues per species. Users query IID by providing a set of proteins or PPIs from any of these organisms, and specifying species and tissues where IID should search for interactions. If query proteins are not from the selected species, IID enables searches across species and tissues automatically by using their orthologs; for example, retrieving interactions in a given tissue, conserved in human and mouse. Interaction data in IID comprises three types of PPI networks: experimentally detected PPIs from major databases, orthologous PPIs and high-confidence computationally predicted PPIs. Interactions are assigned to tissues where their proteins pairs or encoding genes are expressed. IID is a major replacement of the I2D interaction database, with larger PPI networks (a total of 1,566,043 PPIs among 68,831 proteins), tissue annotations for interactions, and new query, analysis and data visualization capabilities. IID is available at http://ophid.utoronto.ca/iid.
Collapse
Affiliation(s)
- Max Kotlyar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Chiara Pastrello
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Nicholas Sheahan
- School of Computing, Queen's University, Kingston, ON, K7L 2N8, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, M5S 1A4, Canada
| |
Collapse
|
19
|
Will T, Helms V. PPIXpress: construction of condition-specific protein interaction networks based on transcript expression. Bioinformatics 2015; 32:571-8. [PMID: 26508756 DOI: 10.1093/bioinformatics/btv620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Protein-protein interaction networks are an important component of modern systems biology. Yet, comparatively few efforts have been made to tailor their topology to the actual cellular condition being studied. Here, we present a network construction method that exploits expression data at the transcript-level and thus reveals alterations in protein connectivity not only caused by differential gene expression but also by alternative splicing. We achieved this by establishing a direct correspondence between individual protein interactions and underlying domain interactions in a complete but condition-unspecific protein interaction network. This knowledge was then used to infer the condition-specific presence of interactions from the dominant protein isoforms. When we compared contextualized interaction networks of matched normal and tumor samples in breast cancer, our transcript-based construction identified more significant alterations that affected proteins associated with cancerogenesis than a method that only uses gene expression data. The approach is provided as the user-friendly tool PPIXpress. AVAILABILITY AND IMPLEMENTATION PPIXpress is available at https://sourceforge.net/projects/ppixpress/.
Collapse
Affiliation(s)
- Thorsten Will
- Center for Bioinformatics and Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
20
|
Theofilatos KA, Likothanassis S, Mavroudi S. Quo vadis computational analysis of PPI data or why the future isn't here yet. Front Genet 2015; 6:289. [PMID: 26442107 PMCID: PMC4584938 DOI: 10.3389/fgene.2015.00289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Spiros Likothanassis
- InSyBio Ltd. London, UK ; Pattern Recognition Laboratory, Department of Computer Engineering and Informatics, University of Patras Patras, Greece
| | - Seferina Mavroudi
- InSyBio Ltd. London, UK ; Pattern Recognition Laboratory, Department of Computer Engineering and Informatics, University of Patras Patras, Greece ; Department of Social Work, School of Sciences of Health and Care, Technological Educational Institute of Western Greece Patras, Greece
| |
Collapse
|
21
|
Systems biology of ion channels and transporters in tumor angiogenesis: An omics view. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2647-56. [DOI: 10.1016/j.bbamem.2014.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 01/19/2023]
|
22
|
Cornish AJ, Filippis I, David A, Sternberg MJE. Exploring the cellular basis of human disease through a large-scale mapping of deleterious genes to cell types. Genome Med 2015; 7:95. [PMID: 26330083 PMCID: PMC4557825 DOI: 10.1186/s13073-015-0212-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/31/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Each cell type found within the human body performs a diverse and unique set of functions, the disruption of which can lead to disease. However, there currently exists no systematic mapping between cell types and the diseases they can cause. METHODS In this study, we integrate protein-protein interaction data with high-quality cell-type-specific gene expression data from the FANTOM5 project to build the largest collection of cell-type-specific interactomes created to date. We develop a novel method, called gene set compactness (GSC), that contrasts the relative positions of disease-associated genes across 73 cell-type-specific interactomes to map genes associated with 196 diseases to the cell types they affect. We conduct text-mining of the PubMed database to produce an independent resource of disease-associated cell types, which we use to validate our method. RESULTS The GSC method successfully identifies known disease-cell-type associations, as well as highlighting associations that warrant further study. This includes mast cells and multiple sclerosis, a cell population currently being targeted in a multiple sclerosis phase 2 clinical trial. Furthermore, we build a cell-type-based diseasome using the cell types identified as manifesting each disease, offering insight into diseases linked through etiology. CONCLUSIONS The data set produced in this study represents the first large-scale mapping of diseases to the cell types in which they are manifested and will therefore be useful in the study of disease systems. Overall, we demonstrate that our approach links disease-associated genes to the phenotypes they produce, a key goal within systems medicine.
Collapse
Affiliation(s)
- Alex J Cornish
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | - Ioannis Filippis
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | - Alessia David
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | - Michael J E Sternberg
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
23
|
Yeger-Lotem E, Sharan R. Human protein interaction networks across tissues and diseases. Front Genet 2015; 6:257. [PMID: 26347769 PMCID: PMC4541328 DOI: 10.3389/fgene.2015.00257] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Protein interaction networks are an important framework for studying protein function, cellular processes, and genotype-to-phenotype relationships. While our view of the human interaction network is constantly expanding, less is known about networks that form in biologically important contexts such as within distinct tissues or in disease conditions. Here we review efforts to characterize these networks and to harness them to gain insights into the molecular mechanisms underlying human disease.
Collapse
Affiliation(s)
- Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
24
|
Browne F, Wang H, Zheng H. A computational framework for the prioritization of disease-gene candidates. BMC Genomics 2015; 16 Suppl 9:S2. [PMID: 26330267 PMCID: PMC4547404 DOI: 10.1186/1471-2164-16-s9-s2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The identification of genes and uncovering the role they play in diseases is an important and complex challenge. Genome-wide linkage and association studies have made advancements in identifying genetic variants that underpin human disease. An important challenge now is to identify meaningful disease-associated genes from a long list of candidate genes implicated by these analyses. The application of gene prioritization can enhance our understanding of disease mechanisms and aid in the discovery of drug targets. The integration of protein-protein interaction networks along with disease datasets and contextual information is an important tool in unraveling the molecular basis of diseases. Results In this paper we propose a computational pipeline for the prioritization of disease-gene candidates. Diverse heterogeneous data including: gene-expression, protein-protein interaction network, ontology-based similarity and topological measures and tissue-specific are integrated. The pipeline was applied to prioritize Alzheimer's Disease (AD) genes, whereby a list of 32 prioritized genes was generated. This approach correctly identified key AD susceptible genes: PSEN1 and TRAF1. Biological process enrichment analysis revealed the prioritized genes are modulated in AD pathogenesis including: regulation of neurogenesis and generation of neurons. Relatively high predictive performance (AUC: 0.70) was observed when classifying AD and normal gene expression profiles from individuals using leave-one-out cross validation. Conclusions This work provides a foundation for future investigation of diverse heterogeneous data integration for disease-gene prioritization.
Collapse
|
25
|
Micale G, Ferro A, Pulvirenti A, Giugno R. SPECTRA: An Integrated Knowledge Base for Comparing Tissue and Tumor-Specific PPI Networks in Human. Front Bioeng Biotechnol 2015; 3:58. [PMID: 26005672 PMCID: PMC4424906 DOI: 10.3389/fbioe.2015.00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/17/2015] [Indexed: 12/11/2022] Open
Abstract
Protein–protein interaction (PPI) networks available in public repositories usually represent relationships between proteins within the cell. They ignore the specific set of tissues or tumors where the interactions take place. Indeed, proteins can form tissue-selective complexes, while they remain inactive in other tissues. For these reasons, a great attention has been recently paid to tissue-specific PPI networks, in which nodes are proteins of the global PPI network whose corresponding genes are preferentially expressed in specific tissues. In this paper, we present SPECTRA, a knowledge base to build and compare tissue or tumor-specific PPI networks. SPECTRA integrates gene expression and protein interaction data from the most authoritative online repositories. We also provide tools for visualizing and comparing such networks, in order to identify the expression and interaction changes of proteins across tissues, or between the normal and pathological states of the same tissue. SPECTRA is available as a web server at http://alpha.dmi.unict.it/spectra.
Collapse
Affiliation(s)
- Giovanni Micale
- Department of Computer Science, University of Pisa , Pisa , Italy
| | - Alfredo Ferro
- Department of Clinical and Molecular Biomedicine, University of Catania , Catania , Italy
| | - Alfredo Pulvirenti
- Department of Clinical and Molecular Biomedicine, University of Catania , Catania , Italy
| | - Rosalba Giugno
- Department of Clinical and Molecular Biomedicine, University of Catania , Catania , Italy
| |
Collapse
|
26
|
Deyati A, Bagewadi S, Senger P, Hofmann-Apitius M, Novac N. Systems approach for the selection of micro-RNAs as therapeutic biomarkers of anti-EGFR monoclonal antibody treatment in colorectal cancer. Sci Rep 2015; 5:8013. [PMID: 25622824 PMCID: PMC5389028 DOI: 10.1038/srep08013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/23/2014] [Indexed: 01/23/2023] Open
Abstract
miRNA plays an important role in tumourgenesis by regulating expression of oncogenes and tumour suppressors. Thus affects cell proliferation and differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential biomarkers for diagnosis, prognosis and therapies of different forms of cancer. However, relationship between response of cancer patients towards targeted therapy and the resulting modifications of the miRNA transcriptome in the context of pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have produced an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. Efficient translation of -omics data and accumulated knowledge to clinical decision-making are of paramount scientific and public health interest. Well-structured translational algorithms are needed to bridge the gap from databases to decisions. Herein, we present a novel SMARTmiR algorithm to prospectively predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer.
Collapse
Affiliation(s)
- Avisek Deyati
- 1] Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany [2] Bonn-Aachen International Center for Information Technology (B-IT), Department of Applied Life Science Informatics, 53113 Bonn, Germany
| | - Shweta Bagewadi
- 1] Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany [2] Bonn-Aachen International Center for Information Technology (B-IT), Department of Applied Life Science Informatics, 53113 Bonn, Germany
| | - Philipp Senger
- 1] Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany [2] Bonn-Aachen International Center for Information Technology (B-IT), Department of Applied Life Science Informatics, 53113 Bonn, Germany
| | - Martin Hofmann-Apitius
- 1] Fraunhofer Institute SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany [2] Bonn-Aachen International Center for Information Technology (B-IT), Department of Applied Life Science Informatics, 53113 Bonn, Germany
| | - Natalia Novac
- Merck Serono, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| |
Collapse
|
27
|
Construction and analyses of human large-scale tissue specific networks. PLoS One 2014; 9:e115074. [PMID: 25513809 PMCID: PMC4267779 DOI: 10.1371/journal.pone.0115074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Construction and analyses of tissue specific networks is crucial to unveil the function and organizational structure of biological systems. As a direct method to detect protein dynamics, human proteome-wide expression data provide an valuable resource to investigate the tissue specificity of proteins and interactions. By integrating protein expression data with large-scale interaction network, we constructed 30 tissue/cell specific networks in human and analyzed their properties and functions. Rather than the tissue specificity of proteins, we mainly focused on the tissue specificity of interactions to distill tissue specific networks. Through comparing our tissue specific networks with those inferred from gene expression data, we found our networks have larger scales and higher reliability. Furthermore, we investigated the similar extent of multiple tissue specific networks, which proved that tissues with similar functions tend to contain more common interactions. Finally, we found that the tissue specific networks differed from the static network in multiple topological properties. The proteins in tissue specific networks are interacting looser and the hubs play more important roles than those in the static network.
Collapse
|
28
|
Li M, Zhang J, Liu Q, Wang J, Wu FX. Prediction of disease-related genes based on weighted tissue-specific networks by using DNA methylation. BMC Med Genomics 2014; 7 Suppl 2:S4. [PMID: 25350763 PMCID: PMC4243158 DOI: 10.1186/1755-8794-7-s2-s4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Predicting disease-related genes is one of the most important tasks in bioinformatics and systems biology. With the advances in high-throughput techniques, a large number of protein-protein interactions are available, which make it possible to identify disease-related genes at the network level. However, network-based identification of disease-related genes is still a challenge as the considerable false-positives are still existed in the current available protein interaction networks (PIN). RESULTS Considering the fact that the majority of genetic disorders tend to manifest only in a single or a few tissues, we constructed tissue-specific networks (TSN) by integrating PIN and tissue-specific data. We further weighed the constructed tissue-specific network (WTSN) by using DNA methylation as it plays an irreplaceable role in the development of complex diseases. A PageRank-based method was developed to identify disease-related genes from the constructed networks. To validate the effectiveness of the proposed method, we constructed PIN, weighted PIN (WPIN), TSN, WTSN for colon cancer and leukemia, respectively. The experimental results on colon cancer and leukemia show that the combination of tissue-specific data and DNA methylation can help to identify disease-related genes more accurately. Moreover, the PageRank-based method was effective to predict disease-related genes on the case studies of colon cancer and leukemia. CONCLUSIONS Tissue-specific data and DNA methylation are two important factors to the study of human diseases. The same method implemented on the WTSN can achieve better results compared to those being implemented on original PIN, WPIN, or TSN. The PageRank-based method outperforms degree centrality-based method for identifying disease-related genes from WTSN.
Collapse
Affiliation(s)
- Min Li
- School of Information Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Jiayi Zhang
- School of Information Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Qing Liu
- School of Information Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Jianxin Wang
- School of Information Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Fang-Xiang Wu
- School of Information Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China
- College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK Canada
| |
Collapse
|
29
|
Grennan KS, Chen C, Gershon ES, Liu C. Molecular network analysis enhances understanding of the biology of mental disorders. Bioessays 2014; 36:606-616. [PMID: 24733456 PMCID: PMC4300946 DOI: 10.1002/bies.201300147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We provide an introduction to network theory, evidence to support a connection between molecular network structure and neuropsychiatric disease, and examples of how network approaches can expand our knowledge of the molecular bases of these diseases. Without systematic methods to derive their biological meanings and inter-relatedness, the many molecular changes associated with neuropsychiatric disease, including genetic variants, gene expression changes, and protein differences, present an impenetrably complex set of findings. Network approaches can potentially help integrate and reconcile these findings, as well as provide new insights into the molecular architecture of neuropsychiatric diseases. Network approaches to neuropsychiatric disease are still in their infancy, and we discuss what might be done to improve their prospects.
Collapse
Affiliation(s)
| | | | - Elliot S. Gershon
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Chunyu Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
30
|
Voss FK, Ullrich F, Münch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 2014; 344:634-8. [PMID: 24790029 DOI: 10.1126/science.1252826] [Citation(s) in RCA: 472] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Regulation of cell volume is critical for many cellular and organismal functions, yet the molecular identity of a key player, the volume-regulated anion channel VRAC, has remained unknown. A genome-wide small interfering RNA screen in mammalian cells identified LRRC8A as a VRAC component. LRRC8A formed heteromers with other LRRC8 multispan membrane proteins. Genomic disruption of LRRC8A ablated VRAC currents. Cells with disruption of all five LRRC8 genes required LRRC8A cotransfection with other LRRC8 isoforms to reconstitute VRAC currents. The isoform combination determined VRAC inactivation kinetics. Taurine flux and regulatory volume decrease also depended on LRRC8 proteins. Our work shows that VRAC defines a class of anion channels, suggests that VRAC is identical to the volume-sensitive organic osmolyte/anion channel VSOAC, and explains the heterogeneity of native VRAC currents.
Collapse
Affiliation(s)
- Felizia K Voss
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hao L, He Q, Wang Z, Craven M, Newton MA, Ahlquist P. Limited agreement of independent RNAi screens for virus-required host genes owes more to false-negative than false-positive factors. PLoS Comput Biol 2013; 9:e1003235. [PMID: 24068911 PMCID: PMC3777922 DOI: 10.1371/journal.pcbi.1003235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022] Open
Abstract
Systematic, genome-wide RNA interference (RNAi) analysis is a powerful approach to identify gene functions that support or modulate selected biological processes. An emerging challenge shared with some other genome-wide approaches is that independent RNAi studies often show limited agreement in their lists of implicated genes. To better understand this, we analyzed four genome-wide RNAi studies that identified host genes involved in influenza virus replication. These studies collectively identified and validated the roles of 614 cell genes, but pair-wise overlap among the four gene lists was only 3% to 15% (average 6.7%). However, a number of functional categories were overrepresented in multiple studies. The pair-wise overlap of these enriched-category lists was high, ∼19%, implying more agreement among studies than apparent at the gene level. Probing this further, we found that the gene lists implicated by independent studies were highly connected in interacting networks by independent functional measures such as protein-protein interactions, at rates significantly higher than predicted by chance. We also developed a general, model-based approach to gauge the effects of false-positive and false-negative factors and to estimate, from a limited number of studies, the total number of genes involved in a process. For influenza virus replication, this novel statistical approach estimates the total number of cell genes involved to be ∼2,800. This and multiple other aspects of our experimental and computational results imply that, when following good quality control practices, the low overlap between studies is primarily due to false negatives rather than false-positive gene identifications. These results and methods have implications for and applications to multiple forms of genome-wide analysis. Genome-wide RNA interference assays of gene functions offer the potential for systematic, global analysis of biological processes. A pressing challenge is to develop meta-analysis methods that effectively combine information from multiple studies. One puzzle is that implicated gene lists from independent studies of the same process often show relatively low overlap. This disagreement might arise from false-positive factors, such as imperfect gene targeting (off-target effects), or from false negatives if separate studies access different components of large, complex systems. We present new methods to examine the relations between individual genome-wide RNAi studies, using studies of host genes in influenza virus replication as a test case. We find that cross-study agreement is greater than suggested by overlap of reported gene lists. This better agreement is evidenced by the strong relation of independent gene lists in functional pathways and protein interaction networks, and by a statistical model that relates multi-study, gene-level findings to factors driving correct, false-negative, and false-positive gene identification. Our analysis of multiple genome-wide studies predicts that there are many undetected host genes important for influenza virus infection, and that false negatives are the major concerns for genome-wide studies.
Collapse
Affiliation(s)
- Linhui Hao
- Institute of Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Qiuling He
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zhishi Wang
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark Craven
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael A. Newton
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (MAN); (PA)
| | - Paul Ahlquist
- Institute of Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- * E-mail: (MAN); (PA)
| |
Collapse
|
32
|
Furlong LI. Human diseases through the lens of network biology. Trends Genet 2013; 29:150-9. [PMID: 23219555 DOI: 10.1016/j.tig.2012.11.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/24/2012] [Accepted: 11/09/2012] [Indexed: 12/13/2022]
|
33
|
Adding protein context to the human protein-protein interaction network to reveal meaningful interactions. PLoS Comput Biol 2013; 9:e1002860. [PMID: 23300433 PMCID: PMC3536619 DOI: 10.1371/journal.pcbi.1002860] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/09/2012] [Indexed: 01/31/2023] Open
Abstract
Interactions of proteins regulate signaling, catalysis, gene expression and many other cellular functions. Therefore, characterizing the entire human interactome is a key effort in current proteomics research. This challenge is complicated by the dynamic nature of protein-protein interactions (PPIs), which are conditional on the cellular context: both interacting proteins must be expressed in the same cell and localized in the same organelle to meet. Additionally, interactions underlie a delicate control of signaling pathways, e.g. by post-translational modifications of the protein partners - hence, many diseases are caused by the perturbation of these mechanisms. Despite the high degree of cell-state specificity of PPIs, many interactions are measured under artificial conditions (e.g. yeast cells are transfected with human genes in yeast two-hybrid assays) or even if detected in a physiological context, this information is missing from the common PPI databases. To overcome these problems, we developed a method that assigns context information to PPIs inferred from various attributes of the interacting proteins: gene expression, functional and disease annotations, and inferred pathways. We demonstrate that context consistency correlates with the experimental reliability of PPIs, which allows us to generate high-confidence tissue- and function-specific subnetworks. We illustrate how these context-filtered networks are enriched in bona fide pathways and disease proteins to prove the ability of context-filters to highlight meaningful interactions with respect to various biological questions. We use this approach to study the lung-specific pathways used by the influenza virus, pointing to IRAK1, BHLHE40 and TOLLIP as potential regulators of influenza virus pathogenicity, and to study the signalling pathways that play a role in Alzheimer's disease, identifying a pathway involving the altered phosphorylation of the Tau protein. Finally, we provide the annotated human PPI network via a web frontend that allows the construction of context-specific networks in several ways. Protein-protein-interactions (PPIs) participate in virtually all biological processes. However, the PPI map is not static but the pairs of proteins that interact depends on the type of cell, the subcellular localization and modifications of the participating proteins, among many other factors. Therefore, it is important to understand the specific conditions under which a PPI happens. Unfortunately, experimental methods often do not provide this information or, even worse, measure PPIs under artificial conditions not found in biological systems. We developed a method to infer this missing information from properties of the interacting proteins, such as in which cell types the proteins are found, which functions they fulfill and whether they are known to play a role in disease. We show that PPIs for which we can infer conditions under which they happen have a higher experimental reliability. Also, our inference agrees well with known pathways and disease proteins. Since diseases usually affect specific cell types, we study PPI networks of influenza proteins in lung tissues and of Alzheimer's disease proteins in neural tissues. In both cases, we can highlight interesting interactions potentially playing a role in disease progression.
Collapse
|
34
|
Magger O, Waldman YY, Ruppin E, Sharan R. Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput Biol 2012; 8:e1002690. [PMID: 23028288 PMCID: PMC3459874 DOI: 10.1371/journal.pcbi.1002690] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 07/28/2012] [Indexed: 01/07/2023] Open
Abstract
The prioritization of candidate disease-causing genes is a fundamental challenge in the post-genomic era. Current state of the art methods exploit a protein-protein interaction (PPI) network for this task. They are based on the observation that genes causing phenotypically-similar diseases tend to lie close to one another in a PPI network. However, to date, these methods have used a static picture of human PPIs, while diseases impact specific tissues in which the PPI networks may be dramatically different. Here, for the first time, we perform a large-scale assessment of the contribution of tissue-specific information to gene prioritization. By integrating tissue-specific gene expression data with PPI information, we construct tissue-specific PPI networks for 60 tissues and investigate their prioritization power. We find that tissue-specific PPI networks considerably improve the prioritization results compared to those obtained using a generic PPI network. Furthermore, they allow predicting novel disease-tissue associations, pointing to sub-clinical tissue effects that may escape early detection.
Collapse
Affiliation(s)
- Oded Magger
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | |
Collapse
|
35
|
Kuzu G, Keskin O, Gursoy A, Nussinov R. Constructing structural networks of signaling pathways on the proteome scale. Curr Opin Struct Biol 2012; 22:367-77. [PMID: 22575757 DOI: 10.1016/j.sbi.2012.04.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 04/18/2012] [Indexed: 11/30/2022]
Abstract
Proteins function through their interactions, and the availability of protein interaction networks could help in understanding cellular processes. However, the known structural data are limited and the classical network node-and-edge representation, where proteins are nodes and interactions are edges, shows only which proteins interact; not how they interact. Structural networks provide this information. Protein-protein interface structures can also indicate which binding partners can interact simultaneously and which are competitive, and can help forecasting potentially harmful drug side effects. Here, we use a powerful protein-protein interactions prediction tool which is able to carry out accurate predictions on the proteome scale to construct the structural network of the extracellular signal-regulated kinases (ERK) in the mitogen-activated protein kinase (MAPK) signaling pathway. This knowledge-based method, PRISM, is motif-based, and is combined with flexible refinement and energy scoring. PRISM predicts protein interactions based on structural and evolutionary similarity to known protein interfaces.
Collapse
Affiliation(s)
- Guray Kuzu
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | | | | | | |
Collapse
|
36
|
A Latent Eigenprobit Model with Link Uncertainty for Prediction of Protein–Protein Interactions. STATISTICS IN BIOSCIENCES 2012. [DOI: 10.1007/s12561-011-9049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
37
|
Secrier M, Pavlopoulos GA, Aerts J, Schneider R. Arena3D: visualizing time-driven phenotypic differences in biological systems. BMC Bioinformatics 2012; 13:45. [PMID: 22439608 PMCID: PMC3368716 DOI: 10.1186/1471-2105-13-45] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes. RESULTS Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene lsm14a in cytokinesis is suggested. We also show how phenotypic patterning allows for extensive comparison and identification of high impact knockdown targets. CONCLUSIONS We present a new visualization approach for perturbation screens with multiple phenotypic outcomes. The novel functionality implemented in Arena3D enables effective understanding and comparison of temporal patterns within morphological layers, to help with the system-wide analysis of dynamic processes. Arena3D is available free of charge for academics as a downloadable standalone application from: http://arena3d.org/.
Collapse
Affiliation(s)
- Maria Secrier
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg 69117, Germany.
| | | | | | | |
Collapse
|
38
|
Gu J, Li S. Towards integrative annotation of the cell-type specific gene functional and signaling map in vascular endothelial cells. MOLECULAR BIOSYSTEMS 2012; 8:2041-9. [DOI: 10.1039/c2mb25065a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|