1
|
Zhang T, Gong C, Pu J, Peng A, Yang J, Wang X. Enhancement of Tolerance against Flonicamid in Solenopsis invicta Queens through Overexpression of CYP6AQ83. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:237-248. [PMID: 39680625 DOI: 10.1021/acs.jafc.4c08903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Solenopsis invicta, an extremely destructive invasive species, has rapidly spread in China, with queens exhibiting chemical tolerance. In this study, bioassays were conducted on S. invicta colonies collected in Nanchong, revealing that the LC50 value of flonicamid for queens (3.91 mg/L) was significantly higher than that for workers (1.07 mg/L). Comparative analysis of transcriptomes of workers and queens treated with flonicamid revealed that differentially expressed genes (DEGs) were significantly enriched in the metabolism of xenobiotics by cytochrome P450 and drug metabolism by cytochrome P450 pathways. Based on the screening of transcriptome data, CYP6AQ83 might be involved in the detoxification metabolism of flonicamid in queens. After RNA interference, the sensitivity of queens to flonicamid was significantly increased by 30% in the treatment of the dsCYP6AQ83 group. Furthermore, heterologous overexpression of CYP6AQ83 in Drosophila melanogaster also significantly enhanced the tolerance against flonicamid. These results indicated that the overexpression of CYP6AQ83 in the queen enhances the tolerance against flonicamid.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Peng
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jizhi Yang
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Acuña-Amador L, Primot A, Cadieu E, Roulet A, Barloy-Hubler F. Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains. BMC Genomics 2018; 19:54. [PMID: 29338683 PMCID: PMC5771137 DOI: 10.1186/s12864-017-4429-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Without knowledge of their genomic sequences, it is impossible to make functional models of the bacteria that make up human and animal microbiota. Unfortunately, the vast majority of publicly available genomes are only working drafts, an incompleteness that causes numerous problems and constitutes a major obstacle to genotypic and phenotypic interpretation. In this work, we began with an example from the class Bacteroidia in the phylum Bacteroidetes, which is preponderant among human orodigestive microbiota. We successfully identify the genetic loci responsible for assembly breaks and misassemblies and demonstrate the importance and usefulness of long-read sequencing and curated reannotation. RESULTS We showed that the fragmentation in Bacteroidia draft genomes assembled from massively parallel sequencing linearly correlates with genomic repeats of the same or greater size than the reads. We also demonstrated that some of these repeats, especially the long ones, correspond to misassembled loci in three reference Porphyromonas gingivalis genomes marked as circularized (thus complete or finished). We prove that even at modest coverage (30X), long-read resequencing together with PCR contiguity verification (rrn operons and an integrative and conjugative element or ICE) can be used to identify and correct the wrongly combined or assembled regions. Finally, although time-consuming and labor-intensive, consistent manual biocuration of three P. gingivalis strains allowed us to compare and correct the existing genomic annotations, resulting in a more accurate interpretation of the genomic differences among these strains. CONCLUSIONS In this study, we demonstrate the usefulness and importance of long-read sequencing in verifying published genomes (even when complete) and generating assemblies for new bacterial strains/species with high genomic plasticity. We also show that when combined with biological validation processes and diligent biocurated annotation, this strategy helps reduce the propagation of errors in shared databases, thus limiting false conclusions based on incomplete or misleading information.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.,Laboratorio de Investigación en Bacteriología Anaerobia, Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Aline Primot
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Edouard Cadieu
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France
| | - Alain Roulet
- GenoToul Genome & Transcriptome (GeT-PlaGe), INRA, US1426, Castanet-Tolosan, France
| | - Frédérique Barloy-Hubler
- Institut de Génétique et Développement de Rennes, CNRS, UMR6290, Université de Rennes 1, Rennes, France.
| |
Collapse
|
3
|
Zhang SV, Zhuo L, Hahn MW. AGOUTI: improving genome assembly and annotation using transcriptome data. Gigascience 2016; 5:31. [PMID: 27435057 PMCID: PMC4952227 DOI: 10.1186/s13742-016-0136-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomes sequenced using short-read, next-generation sequencing technologies can have many errors and may be fragmented into thousands of small contigs. These incomplete and fragmented assemblies lead to errors in gene identification, such that single genes spread across multiple contigs are annotated as separate gene models. Such biases can confound inferences about the number and identity of genes within species, as well as gene gain and loss between species. RESULTS We present AGOUTI (Annotated Genome Optimization Using Transcriptome Information), a tool that uses RNA sequencing data to simultaneously combine contigs into scaffolds and fragmented gene models into single models. We show that AGOUTI improves both the contiguity of genome assemblies and the accuracy of gene annotation, providing updated versions of each as output. Running AGOUTI on both simulated and real datasets, we show that it is highly accurate and that it achieves greater accuracy and contiguity when compared with other existing methods. CONCLUSION AGOUTI is a powerful and effective scaffolder and, unlike most scaffolders, is expected to be more effective in larger genomes because of the commensurate increase in intron length. AGOUTI is able to scaffold thousands of contigs while simultaneously reducing the number of gene models by hundreds or thousands. The software is available free of charge under the MIT license.
Collapse
Affiliation(s)
- Simo V. Zhang
- />School of Informatics and Computing, Indiana University, Bloomington, IN 47405 USA
| | - Luting Zhuo
- />School of Informatics and Computing, Indiana University, Bloomington, IN 47405 USA
| | - Matthew W. Hahn
- />School of Informatics and Computing, Indiana University, Bloomington, IN 47405 USA
- />Department of Biology, Indiana University, Bloomington, IN 47405 USA
| |
Collapse
|
4
|
Drăgan MA, Moghul I, Priyam A, Bustos C, Wurm Y. GeneValidator: identify problems with protein-coding gene predictions. Bioinformatics 2016; 32:1559-61. [PMID: 26787666 PMCID: PMC4866521 DOI: 10.1093/bioinformatics/btw015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/08/2015] [Accepted: 12/18/2015] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED : Genomes of emerging model organisms are now being sequenced at very low cost. However, obtaining accurate gene predictions remains challenging: even the best gene prediction algorithms make substantial errors and can jeopardize subsequent analyses. Therefore, many predicted genes must be time-consumingly visually inspected and manually curated. We developed GeneValidator (GV) to automatically identify problematic gene predictions and to aid manual curation. For each gene, GV performs multiple analyses based on comparisons to gene sequences from large databases. The resulting report identifies problematic gene predictions and includes extensive statistics and graphs for each prediction to guide manual curation efforts. GV thus accelerates and enhances the work of biocurators and researchers who need accurate gene predictions from newly sequenced genomes. AVAILABILITY AND IMPLEMENTATION GV can be used through a web interface or in the command-line. GV is open-source (AGPL), available at https://wurmlab.github.io/tools/genevalidator CONTACT : y.wurm@qmul.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Ismail Moghul
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK and
| | - Anurag Priyam
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK and
| | - Claudio Bustos
- Departamento de Psiquiatría y Salud Mental, University of Concepción, Concepción, Chile
| | - Yannick Wurm
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK and
| |
Collapse
|
5
|
Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome. Sci Rep 2015; 5:18019. [PMID: 26658305 PMCID: PMC4676012 DOI: 10.1038/srep18019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/10/2015] [Indexed: 01/24/2023] Open
Abstract
High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives.
Collapse
|
6
|
Trends in IT Innovation to Build a Next Generation Bioinformatics Solution to Manage and Analyse Biological Big Data Produced by NGS Technologies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:904541. [PMID: 26125026 PMCID: PMC4466500 DOI: 10.1155/2015/904541] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023]
Abstract
Sequencing the human genome began in 1994, and 10 years of work were necessary in order to provide a nearly complete sequence. Nowadays, NGS technologies allow sequencing of a whole human genome in a few days. This deluge of data challenges scientists in many ways, as they are faced with data management issues and analysis and visualization drawbacks due to the limitations of current bioinformatics tools. In this paper, we describe how the NGS Big Data revolution changes the way of managing and analysing data. We present how biologists are confronted with abundance of methods, tools, and data formats. To overcome these problems, focus on Big Data Information Technology innovations from web and business intelligence. We underline the interest of NoSQL databases, which are much more efficient than relational databases. Since Big Data leads to the loss of interactivity with data during analysis due to high processing time, we describe solutions from the Business Intelligence that allow one to regain interactivity whatever the volume of data is. We illustrate this point with a focus on the Amadea platform. Finally, we discuss visualization challenges posed by Big Data and present the latest innovations with JavaScript graphic libraries.
Collapse
|
7
|
Tang B, Wang Q, Yang M, Xie F, Zhu Y, Zhuo Y, Wang S, Gao H, Ding X, Zhang L, Zhao G, Zheng H. ContigScape: a Cytoscape plugin facilitating microbial genome gap closing. BMC Genomics 2013; 14:289. [PMID: 23627759 PMCID: PMC3651407 DOI: 10.1186/1471-2164-14-289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/20/2013] [Indexed: 01/22/2023] Open
Abstract
Background With the emergence of next-generation sequencing, the availability of prokaryotic genome sequences is expanding rapidly. A total of 5,276 genomes have been released since 2008, yet only 1,692 genomes were complete. The final phase of microbial genome sequencing, particularly gap closing, is frequently the rate-limiting step either because of complex genomic structures that cause sequence bias even with high genomic coverage, or the presence of repeat sequences that may cause gaps in assembly. Results We have developed a Cytoscape plugin to facilitate gap closing for high-throughput sequencing data from microbial genomes. This plugin is capable of interactively displaying the relationships among genomic contigs derived from various sequencing formats. The sequence contigs of plasmids and special repeats (IS elements, ribosomal RNAs, terminal repeats, etc.) can be displayed as well. Conclusions Displaying relationships between contigs using graphs in Cytoscape rather than tables provides a more straightforward visual representation. This will facilitate a faster and more precise determination of the linkages among contigs and greatly improve the efficiency of gap closing.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|