1
|
Villalobos-Alva J, Ochoa-Toledo L, Villalobos-Alva MJ, Aliseda A, Pérez-Escamirosa F, Altamirano-Bustamante NF, Ochoa-Fernández F, Zamora-Solís R, Villalobos-Alva S, Revilla-Monsalve C, Kemper-Valverde N, Altamirano-Bustamante MM. Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field. Front Bioeng Biotechnol 2022; 10:788300. [PMID: 35875501 PMCID: PMC9301016 DOI: 10.3389/fbioe.2022.788300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Proteins are some of the most fascinating and challenging molecules in the universe, and they pose a big challenge for artificial intelligence. The implementation of machine learning/AI in protein science gives rise to a world of knowledge adventures in the workhorse of the cell and proteome homeostasis, which are essential for making life possible. This opens up epistemic horizons thanks to a coupling of human tacit-explicit knowledge with machine learning power, the benefits of which are already tangible, such as important advances in protein structure prediction. Moreover, the driving force behind the protein processes of self-organization, adjustment, and fitness requires a space corresponding to gigabytes of life data in its order of magnitude. There are many tasks such as novel protein design, protein folding pathways, and synthetic metabolic routes, as well as protein-aggregation mechanisms, pathogenesis of protein misfolding and disease, and proteostasis networks that are currently unexplored or unrevealed. In this systematic review and biochemical meta-analysis, we aim to contribute to bridging the gap between what we call binomial artificial intelligence (AI) and protein science (PS), a growing research enterprise with exciting and promising biotechnological and biomedical applications. We undertake our task by exploring "the state of the art" in AI and machine learning (ML) applications to protein science in the scientific literature to address some critical research questions in this domain, including What kind of tasks are already explored by ML approaches to protein sciences? What are the most common ML algorithms and databases used? What is the situational diagnostic of the AI-PS inter-field? What do ML processing steps have in common? We also formulate novel questions such as Is it possible to discover what the rules of protein evolution are with the binomial AI-PS? How do protein folding pathways evolve? What are the rules that dictate the folds? What are the minimal nuclear protein structures? How do protein aggregates form and why do they exhibit different toxicities? What are the structural properties of amyloid proteins? How can we design an effective proteostasis network to deal with misfolded proteins? We are a cross-functional group of scientists from several academic disciplines, and we have conducted the systematic review using a variant of the PICO and PRISMA approaches. The search was carried out in four databases (PubMed, Bireme, OVID, and EBSCO Web of Science), resulting in 144 research articles. After three rounds of quality screening, 93 articles were finally selected for further analysis. A summary of our findings is as follows: regarding AI applications, there are mainly four types: 1) genomics, 2) protein structure and function, 3) protein design and evolution, and 4) drug design. In terms of the ML algorithms and databases used, supervised learning was the most common approach (85%). As for the databases used for the ML models, PDB and UniprotKB/Swissprot were the most common ones (21 and 8%, respectively). Moreover, we identified that approximately 63% of the articles organized their results into three steps, which we labeled pre-process, process, and post-process. A few studies combined data from several databases or created their own databases after the pre-process. Our main finding is that, as of today, there are no research road maps serving as guides to address gaps in our knowledge of the AI-PS binomial. All research efforts to collect, integrate multidimensional data features, and then analyze and validate them are, so far, uncoordinated and scattered throughout the scientific literature without a clear epistemic goal or connection between the studies. Therefore, our main contribution to the scientific literature is to offer a road map to help solve problems in drug design, protein structures, design, and function prediction while also presenting the "state of the art" on research in the AI-PS binomial until February 2021. Thus, we pave the way toward future advances in the synthetic redesign of novel proteins and protein networks and artificial metabolic pathways, learning lessons from nature for the welfare of humankind. Many of the novel proteins and metabolic pathways are currently non-existent in nature, nor are they used in the chemical industry or biomedical field.
Collapse
Affiliation(s)
- Jalil Villalobos-Alva
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Luis Ochoa-Toledo
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mario Javier Villalobos-Alva
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Atocha Aliseda
- Instituto de Investigaciones Filosóficas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fernando Pérez-Escamirosa
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Francine Ochoa-Fernández
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ricardo Zamora-Solís
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Sebastián Villalobos-Alva
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Nicolás Kemper-Valverde
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Myriam M. Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
2
|
Talibart H, Coste F. PPalign: optimal alignment of Potts models representing proteins with direct coupling information. BMC Bioinformatics 2021; 22:317. [PMID: 34112081 PMCID: PMC8191105 DOI: 10.1186/s12859-021-04222-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
Background To assign structural and functional annotations to the ever increasing amount of sequenced proteins, the main approach relies on sequence-based homology search methods, e.g. BLAST or the current state-of-the-art methods based on profile Hidden Markov Models, which rely on significant alignments of query sequences to annotated proteins or protein families. While powerful, these approaches do not take coevolution between residues into account. Taking advantage of recent advances in the field of contact prediction, we propose here to represent proteins by Potts models, which model direct couplings between positions in addition to positional composition, and to compare proteins by aligning these models. Due to non-local dependencies, the problem of aligning Potts models is hard and remains the main computational bottleneck for their use. Methods We introduce here an Integer Linear Programming formulation of the problem and PPalign, a program based on this formulation, to compute the optimal pairwise alignment of Potts models representing proteins in tractable time. The approach is assessed with respect to a non-redundant set of reference pairwise sequence alignments from SISYPHUS benchmark which have lowest sequence identity (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3\%$$\end{document}3% and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$20\%$$\end{document}20%) and enable to build reliable Potts models for each sequence to be aligned. This experimentation confirms that Potts models can be aligned in reasonable time (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1'37''$$\end{document}1′37′′ in average on these alignments). The contribution of couplings is evaluated in comparison with HHalign and independent-site PPalign. Although Potts models were not fully optimized for alignment purposes and simple gap scores were used, PPalign yields a better mean \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_1$$\end{document}F1 score and finds significantly better alignments than HHalign and PPalign without couplings in some cases. Conclusions These results show that pairwise couplings from protein Potts models can be used to improve the alignment of remotely related protein sequences in tractable time. Our experimentation suggests yet that new research on the inference of Potts models is now needed to make them more comparable and suitable for homology search. We think that PPalign’s guaranteed optimality will be a powerful asset to perform unbiased investigations in this direction.
Collapse
|
3
|
Wilburn GW, Eddy SR. Remote homology search with hidden Potts models. PLoS Comput Biol 2020; 16:e1008085. [PMID: 33253143 PMCID: PMC7728182 DOI: 10.1371/journal.pcbi.1008085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/10/2020] [Accepted: 10/27/2020] [Indexed: 12/03/2022] Open
Abstract
Most methods for biological sequence homology search and alignment work with primary sequence alone, neglecting higher-order correlations. Recently, statistical physics models called Potts models have been used to infer all-by-all pairwise correlations between sites in deep multiple sequence alignments, and these pairwise couplings have improved 3D structure predictions. Here we extend the use of Potts models from structure prediction to sequence alignment and homology search by developing what we call a hidden Potts model (HPM) that merges a Potts emission process to a generative probability model of insertion and deletion. Because an HPM is incompatible with efficient dynamic programming alignment algorithms, we develop an approximate algorithm based on importance sampling, using simpler probabilistic models as proposal distributions. We test an HPM implementation on RNA structure homology search benchmarks, where we can compare directly to exact alignment methods that capture nested RNA base-pairing correlations (stochastic context-free grammars). HPMs perform promisingly in these proof of principle experiments.
Collapse
Affiliation(s)
- Grey W. Wilburn
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Sean R. Eddy
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
4
|
Jung M, Ramanagoudr-Bhojappa R, van Twest S, Rosti RO, Murphy V, Tan W, Donovan FX, Lach FP, Kimble DC, Jiang CS, Vaughan R, Mehta PA, Pierri F, Dufour C, Auerbach AD, Deans AJ, Smogorzewska A, Chandrasekharappa SC. Association of clinical severity with FANCB variant type in Fanconi anemia. Blood 2020; 135:1588-1602. [PMID: 32106311 PMCID: PMC7193183 DOI: 10.1182/blood.2019003249] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia (FA) is the most common genetic cause of bone marrow failure and is caused by inherited pathogenic variants in any of 22 genes. Of these, only FANCB is X-linked. We describe a cohort of 19 children with FANCB variants, from 16 families of the International Fanconi Anemia Registry. Those with FANCB deletion or truncation demonstrate earlier-than-average onset of bone marrow failure and more severe congenital abnormalities compared with a large series of FA individuals in published reports. This reflects the indispensable role of FANCB protein in the enzymatic activation of FANCD2 monoubiquitination, an essential step in the repair of DNA interstrand crosslinks. For FANCB missense variants, more variable severity is associated with the extent of residual FANCD2 monoubiquitination activity. We used transcript analysis, genetic complementation, and biochemical reconstitution of FANCD2 monoubiquitination to determine the pathogenicity of each variant. Aberrant splicing and transcript destabilization were associated with 2 missense variants. Individuals carrying missense variants with drastically reduced FANCD2 monoubiquitination in biochemical and/or cell-based assays tended to show earlier onset of hematologic disease and shorter survival. Conversely, variants with near-normal FANCD2 monoubiquitination were associated with more favorable outcome. Our study reveals a genotype-phenotype correlation within the FA-B complementation group of FA, where severity is associated with level of residual FANCD2 monoubiquitination.
Collapse
Affiliation(s)
- Moonjung Jung
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Sylvie van Twest
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Rasim Ozgur Rosti
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Vincent Murphy
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Winnie Tan
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Frank X Donovan
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Danielle C Kimble
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Caroline S Jiang
- Department of Biostatistics, The Rockefeller University Hospital, The Rockefeller University, New York, NY
| | - Roger Vaughan
- Department of Biostatistics, The Rockefeller University Hospital, The Rockefeller University, New York, NY
| | - Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Carlo Dufour
- Hematology Unit, IRCSS G. Gaslini, Genoa, Italy; and
| | - Arleen D Auerbach
- Human Genetics and Hematology Program, The Rockefeller University, New York, NY
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Settara C Chandrasekharappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Dehghani T, Naghibzadeh M, Sadri J. Enhancement of Protein β-Sheet Topology Prediction Using Maximum Weight Disjoint Path Cover. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:1936-1947. [PMID: 29994539 DOI: 10.1109/tcbb.2018.2837753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Predicting β-sheet topology (β-topology) is one of the most critical intermediate steps towards protein structure and function prediction. The β-topology prediction problem is defined as the determination of the optimal arrangement of β-strand interactions within protein β-sheets. Significant efforts have been made to predict β-topologies. However, due to the inaccurate determination of interactions among β-strands and the huge topological space of proteins with a large number of β-strands, more efficient methods are required to improve both the accuracy and speed of β-topology prediction. In order to attain higher accuracy, the current paper introduces a bidirectional strand-strand interaction graph and considers all possible orientations (parallel and antiparallel) and orders of β-strand pairwise interactions. For the first time, the β-topology prediction is transformed into a maximum weight disjoint path cover solution by conserving all potential topologies. Moreover, to manage the computation time, a set of candidate β-sheets is generated and an optimization process is applied to select a subset of maximum score disjoint β-sheets as a predicted β-topology. The proposed method is comprehensively compared with state-of-the-art methods. The experimental results on the BetaSheet916 and BetaSheet1452 datasets reveal that the current study's approach enhances performance measurements as well as reduces the runtime.
Collapse
|
6
|
Dehghani T, Naghibzadeh M, Eghdami M. BetaDL: A protein beta-sheet predictor utilizing a deep learning model and independent set solution. Comput Biol Med 2019; 104:241-249. [PMID: 30530227 DOI: 10.1016/j.compbiomed.2018.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
The sequence-based prediction of beta-residue contacts and beta-sheet structures contain key information for protein structure prediction. However, the determination of beta-sheet structures poses numerous challenges due to long-range beta-residue interactions and the huge number of possible beta-sheet structures. Recently gaining attention has been the prediction of residue contacts based on deep learning models whose results have led to improvement in protein structure prediction. In addition, to reduce the computational complexity of determining beta-sheet structures, it has been suggested that this problem be transformed into graph-based solutions. Consequently, the current work proposes BetaDL, a combination of a deep learning and a graph-based beta-sheet structure predictor. BetaDL adopts deep learning models to capture beta-residue contacts and improve beta-sheet structure predictions. In addition, a graph-based approach is presented to model the beta-sheets conformational space and a new score function is introduced to evaluate beta-sheets. Furthermore, the present study demonstrates that the beta-sheet structure can be predicted within an acceptable computational time by the utilization of a heuristic maximum weight independent set solution. When compared to state-of-the-art methods, experimental results from BetaSheet916 and BetaSheet1452 datasets indicate that BetaDL improves the accuracy of beta-residue contact and beta-sheet structure prediction. Using BetaDL, beta-sheet structures are predicted with a 4% and 6% improvement in the F1-score at the residue and strand levels, respectively. BetaDL's source code and data are available at http://kerg.um.ac.ir/index.php/datasets/#BetaDL.
Collapse
Affiliation(s)
- Toktam Dehghani
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmoud Naghibzadeh
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahdie Eghdami
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Yang Z, Tsui SKW. Functional Annotation of Proteins Encoded by the Minimal Bacterial Genome Based on Secondary Structure Element Alignment. J Proteome Res 2018; 17:2511-2520. [PMID: 29757649 DOI: 10.1021/acs.jproteome.8b00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In synthetic biology, one of the key focuses is building a minimal artificial cell which can provide basic chassis for functional study. Recently, the J. Craig Venter Institute published the latest version of the minimal bacterial genome JCVI-syn3.0, which only encoded 438 essential proteins. However, among them functions of 149 proteins remain unknown because of the lack of effective annotation method. Here, we report a secondary structure element alignment method called SSEalign based on an effective training data set extracting from various bacterial genomes. The experimentally validated homologous genes in different species were selected as training positives, while unrelated genes in different species were selected as training negatives. Moreover, SSEalign used a set of well-defined basic alignment elements with the backtracking line search algorithm to derive the best parameters for accurate prediction. Experimental results showed that SSEalign achieved 88.2% test accuracy, which is better than the existing prediction methods. SSEalign was subsequently applied to identify the functions of those unannotated proteins in the latest published minimal bacteria genome JCVI-syn3.0. Results indicated that at least 136 proteins out of 149 unannotated proteins in the JCVI-syn3.0 genome could be annotated by SSEalign. Our method is effective for the identification of protein homology in JCVI-syn3.0 and can be used to annotate those hypothetical proteins in other bacterial genomes.
Collapse
Affiliation(s)
- Zhiyuan Yang
- College of Life Information Science & Instrument Engineering , Hangzhou Dianzi University , Hangzhou 310018 , China.,School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong.,Hong Kong Bioinformatics Centre , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong.,Hong Kong Bioinformatics Centre , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong.,Centre for Microbial Genomics and Proteomics , The Chinese University of Hong Kong , Shatin , N.T. , Hong Kong
| |
Collapse
|
8
|
Cui X, Lu Z, Wang S, Jing-Yan Wang J, Gao X. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction. Bioinformatics 2016; 32:i332-i340. [PMID: 27307635 PMCID: PMC4908355 DOI: 10.1093/bioinformatics/btw271] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
MOTIVATION Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. METHOD We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. RESULTS We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. AVAILABILITY AND IMPLEMENTATION Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx CONTACT : xin.gao@kaust.edu.sa SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xuefeng Cui
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Zhiwu Lu
- Beijing Key Laboratory of Big Data Management and Analysis Methods, School of Information, Renmin University of China, Beijing 100872, China
| | - Sheng Wang
- Toyota Technological Institute at Chicago, 6045 Kenwood Avenue, Chicago, IL 60637, USA Department of Human Genetics, University of Chicago, E. 58th St, Chicago, IL 60637, USA
| | - Jim Jing-Yan Wang
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Daniels NM, Gallant A, Ramsey N, Cowen LJ. MRFy: Remote Homology Detection for Beta-Structural Proteins Using Markov Random Fields and Stochastic Search. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:4-16. [PMID: 26357074 DOI: 10.1109/tcbb.2014.2344682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We introduce MRFy, a tool for protein remote homology detection that captures beta-strand dependencies in the Markov random field. Over a set of 11 SCOP beta-structural superfamilies, MRFy shows a 14 percent improvement in mean Area Under the Curve for the motif recognition problem as compared to HMMER, 25 percent improvement as compared to RAPTOR, 14 percent improvement as compared to HHPred, and a 18 percent improvement as compared to CNFPred and RaptorX. MRFy was implemented in the Haskell functional programming language, and parallelizes well on multi-core systems. MRFy is available, as source code as well as an executable, from http://mrfy.cs.tufts.edu/.
Collapse
|
10
|
Ma J, Wang S, Wang Z, Xu J. MRFalign: protein homology detection through alignment of Markov random fields. PLoS Comput Biol 2014; 10:e1003500. [PMID: 24675572 PMCID: PMC3967925 DOI: 10.1371/journal.pcbi.1003500] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2–5. Sequence-based protein homology detection has been extensively studied, but it remains very challenging for remote homologs with divergent sequences. So far the most sensitive methods employ HMM-HMM comparison, which models a protein family using HMM (Hidden Markov Model) and then detects homologs using HMM-HMM alignment. HMM cannot model long-range residue interaction patterns and thus, carries very little information regarding the global 3D structure of a protein family. As such, HMM comparison is not sensitive enough for distantly-related homologs. In this paper, we present an MRF-MRF comparison method for homology detection. In particular, we model a protein family using Markov Random Fields (MRF) and then detect homologs by MRF-MRF alignment. Compared to HMM, MRFs are able to model long-range residue interaction pattern and thus, contains information for the overall 3D structure of a protein family. Consequently, MRF-MRF comparison is much more sensitive than HMM-HMM comparison. To implement MRF-MRF comparison, we have developed a new scoring function to measure the similarity of two MRFs and also an efficient ADMM algorithm to optimize the scoring function. Experiments confirm that MRF-MRF comparison indeed outperforms HMM-HMM comparison in terms of both alignment accuracy and remote homology detection, especially for mainly beta proteins.
Collapse
Affiliation(s)
- Jianzhu Ma
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Zhiyong Wang
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
11
|
Song T, Gu H. Discriminative motif discovery via simulated evolution and random under-sampling. PLoS One 2014; 9:e87670. [PMID: 24551063 PMCID: PMC3923751 DOI: 10.1371/journal.pone.0087670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/29/2013] [Indexed: 11/22/2022] Open
Abstract
Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs) training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.
Collapse
Affiliation(s)
- Tao Song
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Hong Gu
- Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, Liaoning, China
- * E-mail:
| |
Collapse
|
12
|
Brylinski M. eVolver: an optimization engine for evolving protein sequences to stabilize the respective structures. BMC Res Notes 2013; 6:303. [PMID: 23902875 PMCID: PMC3735418 DOI: 10.1186/1756-0500-6-303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many structural bioinformatics approaches employ sequence profile-based threading techniques. To improve fold recognition rates, homology searching may include artificially evolved amino acid sequences, which were demonstrated to enhance the sensitivity of protein threading in targeting midnight zone templates. FINDINGS We describe implementation details of eVolver, an optimization algorithm that evolves protein sequences to stabilize the respective structures by a variety of potentials, which are compatible with those commonly used in protein threading. In a case study focusing on LARG PDZ domain, we show that artificially evolved sequences have quite high capabilities to recognize the correct protein structures using standard sequence profile-based fold recognition. CONCLUSIONS Computationally design protein sequences can be incorporated in existing sequence profile-based threading approaches to increase their sensitivity. They also provide a desired linkage between protein structure and function in in silico experiments that relate to e.g. the completeness of protein structure space, the origin of folds and protein universe. eVolver is freely available as a user-friendly webserver and a well-documented stand-alone software distribution at http://www.brylinski.org/evolver.
Collapse
Affiliation(s)
- Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
Abstract
MOTIVATION The exponential growth of protein sequence databases has increasingly made the fundamental question of searching for homologs a computational bottleneck. The amount of unique data, however, is not growing nearly as fast; we can exploit this fact to greatly accelerate homology search. Acceleration of programs in the popular PSI/DELTA-BLAST family of tools will not only speed-up homology search directly but also the huge collection of other current programs that primarily interact with large protein databases via precisely these tools. RESULTS We introduce a suite of homology search tools, powered by compressively accelerated protein BLAST (CaBLASTP), which are significantly faster than and comparably accurate with all known state-of-the-art tools, including HHblits, DELTA-BLAST and PSI-BLAST. Further, our tools are implemented in a manner that allows direct substitution into existing analysis pipelines. The key idea is that we introduce a local similarity-based compression scheme that allows us to operate directly on the compressed data. Importantly, CaBLASTP's runtime scales almost linearly in the amount of unique data, as opposed to current BLASTP variants, which scale linearly in the size of the full protein database being searched. Our compressive algorithms will speed-up many tasks, such as protein structure prediction and orthology mapping, which rely heavily on homology search. AVAILABILITY CaBLASTP is available under the GNU Public License at http://cablastp.csail.mit.edu/ CONTACT bab@mit.edu.
Collapse
Affiliation(s)
- Noah M Daniels
- Department of Computer Science, Tufts University, Medford, MA 02451, USA
| | | | | | | | | | | |
Collapse
|
14
|
Daniels NM, Nadimpalli S, Cowen LJ. Formatt: Correcting protein multiple structural alignments by incorporating sequence alignment. BMC Bioinformatics 2012; 13:259. [PMID: 23039758 PMCID: PMC3585936 DOI: 10.1186/1471-2105-13-259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The quality of multiple protein structure alignments are usually computed and assessed based on geometric functions of the coordinates of the backbone atoms from the protein chains. These purely geometric methods do not utilize directly protein sequence similarity, and in fact, determining the proper way to incorporate sequence similarity measures into the construction and assessment of protein multiple structure alignments has proved surprisingly difficult. RESULTS We present Formatt, a multiple structure alignment based on the Matt purely geometric multiple structure alignment program, that also takes into account sequence similarity when constructing alignments. We show that Formatt outperforms Matt and other popular structure alignment programs on the popular HOMSTRAD benchmark. For the SABMark twilight zone benchmark set that captures more remote homology, Formatt and Matt outperform other programs; depending on choice of embedded sequence aligner, Formatt produces either better sequence and structural alignments with a smaller core size than Matt, or similarly sized alignments with better sequence similarity, for a small cost in average RMSD. CONCLUSIONS Considering sequence information as well as purely geometric information seems to improve quality of multiple structure alignments, though defining what constitutes the best alignment when sequence and structural measures would suggest different alignments remains a difficult open question.
Collapse
Affiliation(s)
- Noah M Daniels
- Department of Computer Science, Tufts University, 161 College Ave, Medford, 02155, MA, USA
| | - Shilpa Nadimpalli
- Department of Computer Science, Princeton University, 35 Olden St, Princeton, 08540, NJ, USA
| | - Lenore J Cowen
- Department of Computer Science, Tufts University, 161 College Ave, Medford, 02155, MA, USA
| |
Collapse
|
15
|
A computational framework for boosting confidence in high-throughput protein-protein interaction datasets. Genome Biol 2012; 13:R76. [PMID: 22937800 PMCID: PMC4053744 DOI: 10.1186/gb-2012-13-8-r76] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/31/2012] [Indexed: 12/28/2022] Open
Abstract
Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer -related or damaging SNPs. Coev2Net can be downloaded at http://struct2net.csail.mit.edu.
Collapse
|