1
|
Liwo A, Leśniewski M. Two Methods for Superposing the Structures of Like-Molecule Assemblies: Application to Peptide and Protein Oligomers and Aggregates. Molecules 2025; 30:1156. [PMID: 40076379 PMCID: PMC11902252 DOI: 10.3390/molecules30051156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Two algorithms are proposed for the superposition of assemblies of like molecules (e.g., peptide and proteins homooligomers and homoaggregates), which do not require examining all permutations of the molecules. Both start from searching the mutual orientation of the two assemblies over a grid of quaternion components for the sub-optimal mapping and orientation of the molecules of the second to those of the first assembly. The first one, termed Like-Molecule Assembly Distance Alignment (LMADA), uses Singular Value Decomposition to superpose the two assemblies, given the sub-optimal mapping. The second one, termed Like-Molecule Assembly Gaussian Distance Alignment (LMAGDA), minimizes the negative of the logarithm of the sum of the Gaussian terms in the distances between the corresponding atoms/sites of all pairs of molecules of the two assemblies in quaternion components, starting from those estimated in the first stage. Both algorithms yield as good or nearly as good superposition, in terms of root mean square deviation (RMSD), as examining all permutations to find the lowest RMSD. LMADA results in lower RMSDs, while LMAGDA in a better alignment of the geometrically matching sections of the assemblies. The costs of the proposed algorithms scale only with N2, N being the number of molecules in the assembly, as opposed to N! when examining all permutations.
Collapse
Affiliation(s)
- Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| | | |
Collapse
|
2
|
Structural Characteristics of the 5′-Terminal Region of Mouse p53 mRNA and Identification of Proteins That Bind to This mRNA Region. Int J Mol Sci 2022; 23:ijms23179709. [PMID: 36077109 PMCID: PMC9456389 DOI: 10.3390/ijms23179709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
A mouse model has often been used in studies of p53 gene expression. Detailed interpretation of functional studies is, however, hampered by insufficient knowledge of the impact of mouse p53 mRNA’s structure and its interactions with proteins in the translation process. In particular, the 5′-terminal region of mouse p53 mRNA is an important region which takes part in the regulation of the synthesis of p53 protein and its N-truncated isoform Δ41p53. In this work, the spatial folding of the 5′-terminal region of mouse p53 mRNA and its selected sub-fragments was proposed based on the results of the SAXS method and the RNAComposer program. Subsequently, RNA-assisted affinity chromatography was used to identify proteins present in mouse fibroblast cell lysates that are able to bind the RNA oligomer, which corresponds to the 5′-terminal region of mouse p53 mRNA. Possible sites to which the selected, identified proteins can bind were proposed. Interestingly, most of these binding sites coincide with the sites determined as accessible to hybridization of complementary oligonucleotides. Finally, the high binding affinity of hnRNP K and PCBP2 to the 5′-terminal region of mouse p53 mRNA was confirmed and their possible binding sites were proposed.
Collapse
|
3
|
Escamilla-Gutiérrez A, Ribas-Aparicio RM, Córdova-Espinoza MG, Castelán-Vega JA. In silico strategies for modeling RNA aptamers and predicting binding sites of their molecular targets. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:798-807. [PMID: 34323642 DOI: 10.1080/15257770.2021.1951754] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA aptamers are single-stranded nucleic acids of 20-100 nucleotides, with high sensitivity and specificity against particular molecular targets. In vitro production and selection of aptamers can be performed using the SELEX method. However, this procedure requires considerable time and cost. In this sense, bioinformatics tools play an important role in reducing the time and cost associated with development and production of aptamers. In this article, we propose bioinformatics strategies for modeling and analysis of the interaction with molecular targets for two RNA aptamers: ATP binding RNA aptamer and iSpinach aptamer. For this purpose, molecular modeling of the tertiary structure of the aptamers was performed with two servers (SimRNA and RNAComposer); and AutoDock Vina and rDock programs were used to dock their respective ligands. The predictions developed with these methods could be used for in silico design of RNA aptamers, through a simple and accessible methodology.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1951754 .
Collapse
Affiliation(s)
- Alejandro Escamilla-Gutiérrez
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Hospital General "Dr. Gaudencio González Garza," Centro Médico Nacional "La Raza," Unidad Médica de Alta Especialidad, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María Guadalupe Córdova-Espinoza
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunology, Escuela Militar de Graduados de Sanidad, Mexico City, Mexico
| | - Juan Arturo Castelán-Vega
- Laboratorio de Producción y Control de Biológicos, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
4
|
Chen X, Khan NS, Zhang S. LocalSTAR3D: a local stack-based RNA 3D structural alignment tool. Nucleic Acids Res 2020; 48:e77. [PMID: 32496533 PMCID: PMC7367197 DOI: 10.1093/nar/gkaa453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022] Open
Abstract
A fast-growing number of non-coding RNA structures have been resolved and deposited in Protein Data Bank (PDB). In contrast to the wide range of global alignment and motif search tools, there is still a lack of local alignment tools. Among all the global alignment tools for RNA 3D structures, STAR3D has become a valuable tool for its unprecedented speed and accuracy. STAR3D compares the 3D structures of RNA molecules using consecutive base-pairs (stacks) as anchors and generates an optimal global alignment. In this article, we developed a local RNA 3D structural alignment tool, named LocalSTAR3D, which was extended from STAR3D and designed to report multiple local alignments between two RNAs. The benchmarking results show that LocalSTAR3D has better accuracy and coverage than other local alignment tools. Furthermore, the utility of this tool has been demonstrated by rediscovering kink-turn motif instances, conserved domains in group II intron RNAs, and the tRNA mimicry of IRES RNAs.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Nabila Shahnaz Khan
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Shaojie Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
5
|
Zheng J, Xie J, Hong X, Liu S. RMalign: an RNA structural alignment tool based on a novel scoring function RMscore. BMC Genomics 2019; 20:276. [PMID: 30961545 PMCID: PMC6454663 DOI: 10.1186/s12864-019-5631-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/20/2019] [Indexed: 01/30/2023] Open
Abstract
Background RNA-protein 3D complex structure prediction is still challenging. Recently, a template-based approach PRIME is proposed in our team to build RNA-protein 3D complex structure models with a higher success rate than computational docking software. However, scoring function of RNA alignment algorithm SARA in PRIME is size-dependent, which limits its ability to detect templates in some cases. Results Herein, we developed a novel RNA 3D structural alignment approach RMalign, which is based on a size-independent scoring function RMscore. The parameter in RMscore is then optimized in randomly selected RNA pairs and phase transition points (from dissimilar to similar) are determined in another randomly selected RNA pairs. In tRNA benchmarking, the precision of RMscore is higher than that of SARAscore (0.88 and 0.78, respectively) with phase transition points. In balance-FSCOR benchmarking, RMalign performed as good as ESA-RNA with a non-normalized score measuring RNA structural similarity. In balance-x-FSCOR benchmarking, RMalign achieves much better than a state-of-the-art RNA 3D structural alignment approach SARA due to a size-independent scoring function. Take the advantage of RMalign, we update our RNA-protein modeling approach PRIME to version 2.0. The PRIME2.0 significantly improves about 10% success rate than PRIME. Conclusion Based on a size-independent scoring function RMscore, a novel RNA 3D structural alignment approach RMalign is developed and integrated into PRIME2.0, which could be useful for the biological community in modeling protein-RNA interaction. Electronic supplementary material The online version of this article (10.1186/s12864-019-5631-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinfang Zheng
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Juan Xie
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xu Hong
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Shiyong Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
6
|
Piatkowski P, Jablonska J, Zyla A, Niedzialek D, Matelska D, Jankowska E, Walen T, Dawson WK, Bujnicki JM. SupeRNAlign: a new tool for flexible superposition of homologous RNA structures and inference of accurate structure-based sequence alignments. Nucleic Acids Res 2017; 45:e150. [PMID: 28934487 PMCID: PMC5766185 DOI: 10.1093/nar/gkx631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 07/12/2017] [Indexed: 01/28/2023] Open
Abstract
RNA has been found to play an ever-increasing role in a variety of biological processes. The function of most non-coding RNA molecules depends on their structure. Comparing and classifying macromolecular 3D structures is of crucial importance for structure-based function inference and it is used in the characterization of functional motifs and in structure prediction by comparative modeling. However, compared to the numerous methods for protein structure superposition, there are few tools dedicated to the superimposing of RNA 3D structures. Here, we present SupeRNAlign (v1.3.1), a new method for flexible superposition of RNA 3D structures, and SupeRNAlign-Coffee—a workflow that combines SupeRNAlign with T-Coffee for inferring structure-based sequence alignments. The methods have been benchmarked with eight other methods for RNA structural superposition and alignment. The benchmark included 151 structures from 32 RNA families (with a total of 1734 pairwise superpositions). The accuracy of superpositions was assessed by comparing structure-based sequence alignments to the reference alignments from the Rfam database. SupeRNAlign and SupeRNAlign-Coffee achieved significantly higher scores than most of the benchmarked methods: SupeRNAlign generated the most accurate sequence alignments among the structure superposition methods, and SupeRNAlign-Coffee performed best among the sequence alignment methods.
Collapse
Affiliation(s)
- Pawel Piatkowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Jagoda Jablonska
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
| | - Adriana Zyla
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Dorota Niedzialek
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Dorota Matelska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Elzbieta Jankowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Tomasz Walen
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland.,Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Wayne K Dawson
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland.,Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Li Y, Shi X, Liang Y, Xie J, Zhang Y, Ma Q. RNA-TVcurve: a Web server for RNA secondary structure comparison based on a multi-scale similarity of its triple vector curve representation. BMC Bioinformatics 2017; 18:51. [PMID: 28109252 PMCID: PMC5251234 DOI: 10.1186/s12859-017-1481-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/10/2017] [Indexed: 01/10/2023] Open
Abstract
Background RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. Results An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. Conclusion RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1481-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Li
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun, 130012, China
| | - Xiaohu Shi
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun, 130012, China
| | - Yanchun Liang
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun, 130012, China.,Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Zhuhai College of Jilin University, Zhuhai, 519041, China
| | - Juan Xie
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, 57007, USA.,Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.,BioSNTR, Brookings, SD, USA
| | - Yu Zhang
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China. .,Key Laboratory of Symbolic Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun, 130012, China.
| | - Qin Ma
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, 57007, USA. .,Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA. .,BioSNTR, Brookings, SD, USA.
| |
Collapse
|
8
|
Nguyen MN, Sim AYL, Wan Y, Madhusudhan MS, Verma C. Topology independent comparison of RNA 3D structures using the CLICK algorithm. Nucleic Acids Res 2016; 45:e5. [PMID: 27634929 PMCID: PMC5741206 DOI: 10.1093/nar/gkw819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/15/2023] Open
Abstract
RNA molecules are attractive therapeutic targets because non-coding RNA molecules have increasingly been found to play key regulatory roles in the cell. Comparing and classifying RNA 3D structures yields unique insights into RNA evolution and function. With the rapid increase in the number of atomic-resolution RNA structures, it is crucial to have effective tools to classify RNA structures and to investigate them for structural similarities at different resolutions. We previously developed the algorithm CLICK to superimpose a pair of protein 3D structures by clique matching and 3D least squares fitting. In this study, we extend and optimize the CLICK algorithm to superimpose pairs of RNA 3D structures and RNA-protein complexes, independent of the associated topologies. Benchmarking Rclick on four different datasets showed that it is either comparable to or better than other structural alignment methods in terms of the extent of structural overlaps. Rclick also recognizes conformational changes between RNA structures and produces complementary alignments to maximize the extent of detectable similarity. Applying Rclick to study Ribonuclease III protein correctly aligned the RNA binding sites of RNAse III with its substrate. Rclick can be further extended to identify ligand-binding pockets in RNA. A web server is developed at http://mspc.bii.a-star.edu.sg/minhn/rclick.html.
Collapse
Affiliation(s)
- Minh N Nguyen
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Adelene Y L Sim
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Yue Wan
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672
| | - M S Madhusudhan
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671.,Indian Institute of Science Education and Research, Pune, India
| | - Chandra Verma
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
9
|
Yang CH, Shih CT, Chen KT, Lee PH, Tsai PH, Lin JC, Yen CY, Lin TY, Lu CL. iPARTS2: an improved tool for pairwise alignment of RNA tertiary structures, version 2. Nucleic Acids Res 2016; 44:W328-32. [PMID: 27185896 PMCID: PMC4987943 DOI: 10.1093/nar/gkw412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/04/2016] [Indexed: 02/02/2023] Open
Abstract
Since its first release in 2010, iPARTS has become a valuable tool for globally or locally aligning two RNA 3D structures. It was implemented by a structural alphabet (SA)-based approach, which uses an SA of 23 letters to reduce RNA 3D structures into 1D sequences of SA letters and applies traditional sequence alignment to these SA-encoded sequences for determining their global or local similarity. In this version, we have re-implemented iPARTS into a new web server iPARTS2 by constructing a totally new SA, which consists of 92 elements with each carrying both information of base and backbone geometry for a representative nucleotide. This SA is significantly different from the one used in iPARTS, because the latter consists of only 23 elements with each carrying only the backbone geometry information of a representative nucleotide. Our experimental results have shown that iPARTS2 outperforms its previous version iPARTS and also achieves better accuracy than other popular tools, such as SARA, SETTER and RASS, in RNA alignment quality and function prediction. iPARTS2 takes as input two RNA 3D structures in the PDB format and outputs their global or local alignments with graphical display. iPARTS2 is now available online at http://genome.cs.nthu.edu.tw/iPARTS2/.
Collapse
Affiliation(s)
- Chung-Han Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30050, Taiwan Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Cheng-Ting Shih
- Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kun-Tze Chen
- Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Po-Han Lee
- Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ping-Han Tsai
- Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jian-Cheng Lin
- Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Yu Yen
- Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tiao-Yin Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30050, Taiwan
| | - Chin Lung Lu
- Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
10
|
Hua L, Song Y, Kim N, Laing C, Wang JTL, Schlick T. CHSalign: A Web Server That Builds upon Junction-Explorer and RNAJAG for Pairwise Alignment of RNA Secondary Structures with Coaxial Helical Stacking. PLoS One 2016; 11:e0147097. [PMID: 26789998 PMCID: PMC4720362 DOI: 10.1371/journal.pone.0147097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023] Open
Abstract
RNA junctions are important structural elements of RNA molecules. They are formed when three or more helices come together in three-dimensional space. Recent studies have focused on the annotation and prediction of coaxial helical stacking (CHS) motifs within junctions. Here we exploit such predictions to develop an efficient alignment tool to handle RNA secondary structures with CHS motifs. Specifically, we build upon our Junction-Explorer software for predicting coaxial stacking and RNAJAG for modelling junction topologies as tree graphs to incorporate constrained tree matching and dynamic programming algorithms into a new method, called CHSalign, for aligning the secondary structures of RNA molecules containing CHS motifs. Thus, CHSalign is intended to be an efficient alignment tool for RNAs containing similar junctions. Experimental results based on thousands of alignments demonstrate that CHSalign can align two RNA secondary structures containing CHS motifs more accurately than other RNA secondary structure alignment tools. CHSalign yields a high score when aligning two RNA secondary structures with similar CHS motifs or helical arrangement patterns, and a low score otherwise. This new method has been implemented in a web server, and the program is also made freely available, at http://bioinformatics.njit.edu/CHSalign/.
Collapse
Affiliation(s)
- Lei Hua
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Yang Song
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Namhee Kim
- Department of Chemistry, New York University, New York, New York, United States of America
| | - Christian Laing
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Jason T. L. Wang
- Bioinformatics Laboratory, Department of Computer Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- * E-mail: (JW); (TS)
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York, United States of America
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America
- * E-mail: (JW); (TS)
| |
Collapse
|
11
|
Čech P, Hoksza D, Svozil D. MultiSETTER: web server for multiple RNA structure comparison. BMC Bioinformatics 2015; 16:253. [PMID: 26264783 PMCID: PMC4531852 DOI: 10.1186/s12859-015-0696-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 12/03/2022] Open
Abstract
Background Understanding the architecture and function of RNA molecules requires methods for comparing and analyzing their tertiary and quaternary structures. While structural superposition of short RNAs is achievable in a reasonable time, large structures represent much bigger challenge. Therefore, we have developed a fast and accurate algorithm for RNA pairwise structure superposition called SETTER and implemented it in the SETTER web server. However, though biological relationships can be inferred by a pairwise structure alignment, key features preserved by evolution can be identified only from a multiple structure alignment. Thus, we extended the SETTER algorithm to the alignment of multiple RNA structures and developed the MultiSETTER algorithm. Results In this paper, we present the updated version of the SETTER web server that implements a user friendly interface to the MultiSETTER algorithm. The server accepts RNA structures either as the list of PDB IDs or as user-defined PDB files. After the superposition is computed, structures are visualized in 3D and several reports and statistics are generated. Conclusion To the best of our knowledge, the MultiSETTER web server is the first publicly available tool for a multiple RNA structure alignment. The MultiSETTER server offers the visual inspection of an alignment in 3D space which may reveal structural and functional relationships not captured by other multiple alignment methods based either on a sequence or on secondary structure motifs.
Collapse
Affiliation(s)
- Petr Čech
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, CZ-166 28, Prague, Czech Republic
| | - David Hoksza
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, CZ-166 28, Prague, Czech Republic. .,Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague, Malostranské nám. 25, CZ-118 00, Prague, Czech Republic.
| | - Daniel Svozil
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
12
|
Ge P, Zhang S. STAR3D: a stack-based RNA 3D structural alignment tool. Nucleic Acids Res 2015; 43:e137. [PMID: 26184875 PMCID: PMC4787758 DOI: 10.1093/nar/gkv697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/26/2015] [Indexed: 01/08/2023] Open
Abstract
The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time.
Collapse
Affiliation(s)
- Ping Ge
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Shaojie Zhang
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
13
|
Lukasiak P, Antczak M, Ratajczak T, Szachniuk M, Popenda M, Adamiak RW, Blazewicz J. RNAssess--a web server for quality assessment of RNA 3D structures. Nucleic Acids Res 2015; 43:W502-6. [PMID: 26068469 PMCID: PMC4489242 DOI: 10.1093/nar/gkv557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/16/2015] [Indexed: 01/15/2023] Open
Abstract
Nowadays, various methodologies can be applied to model RNA 3D structure. Thus, the plausible quality assessment of 3D models has a fundamental impact on the progress of structural bioinformatics. Here, we present RNAssess server, a novel tool dedicated to visual evaluation of RNA 3D models in the context of the known reference structure for a wide range of accuracy levels (from atomic to the whole molecule perspective). The proposed server is based on the concept of local neighborhood, defined as a set of atoms observed within a sphere localized around a central atom of a particular residue. A distinctive feature of our server is the ability to perform simultaneous visual analysis of the model-reference structure coherence. RNAssess supports the quality assessment through delivering both static and interactive visualizations that allows an easy identification of native-like models and/or chosen structural regions of the analyzed molecule. A combination of results provided by RNAssess allows us to rank analyzed models. RNAssess offers new route to a fast and efficient 3D model evaluation suitable for the RNA-Puzzles challenge. The proposed automated tool is implemented as a free and open to all users web server with an user-friendly interface and can be accessed at: http://rnassess.cs.put.poznan.pl/
Collapse
Affiliation(s)
- Piotr Lukasiak
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Tomasz Ratajczak
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jacek Blazewicz
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
14
|
Hoksza D, Svozil D. Multiple 3D RNA Structure Superposition Using Neighbor Joining. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:520-530. [PMID: 26357263 DOI: 10.1109/tcbb.2014.2351810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent advances in RNA research and the steady growth of available RNA structures call for bioinformatics methods for handling and analyzing RNA structural data. Recently, we introduced SETTER-a fast and accurate method for RNA pairwise structure alignment. In this paper, we describe MultiSETTER, SETTER extension for multiple RNA structure alignment. MultiSETTER combines SETTER's decomposition of RNA structures into non-overlapping structural subunits with the multiple sequence alignment algorithm ClustalW adapted for the structure alignment. The accuracy of MultiSETTER was assessed by the automatic classification of RNA structures and its comparison to SCOR annotations. In addition, MultiSETTER classification was also compared to multiple sequence alignment-based and secondary structure alignment-based classifications provided by LocARNA and RNADistance tools, respectively. MultiSETTER precompiled Windows libraries, as well as the C++ source code, are freely available from http://siret.cz/multisetter.
Collapse
|
15
|
Song Y, Hua L, Shapiro BA, Wang JTL. Effective alignment of RNA pseudoknot structures using partition function posterior log-odds scores. BMC Bioinformatics 2015; 16:39. [PMID: 25727492 PMCID: PMC4339682 DOI: 10.1186/s12859-015-0464-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 01/13/2015] [Indexed: 11/18/2022] Open
Abstract
Background RNA pseudoknots play important roles in many biological processes. Previous methods for comparative pseudoknot analysis mainly focus on simultaneous folding and alignment of RNA sequences. Little work has been done to align two known RNA secondary structures with pseudoknots taking into account both sequence and structure information of the two RNAs. Results In this article we present a novel method for aligning two known RNA secondary structures with pseudoknots. We adopt the partition function methodology to calculate the posterior log-odds scores of the alignments between bases or base pairs of the two RNAs with a dynamic programming algorithm. The posterior log-odds scores are then used to calculate the expected accuracy of an alignment between the RNAs. The goal is to find an optimal alignment with the maximum expected accuracy. We present a heuristic to achieve this goal. The performance of our method is investigated and compared with existing tools for RNA structure alignment. An extension of the method to multiple alignment of pseudoknot structures is also discussed. Conclusions The method described here has been implemented in a tool named RKalign, which is freely accessible on the Internet. As more and more pseudoknots are revealed, collected and stored in public databases, we anticipate a tool like RKalign will play a significant role in data comparison, annotation, analysis, and retrieval in these databases. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0464-9) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
|
17
|
He G, Steppi A, Laborde J, Srivastava A, Zhao P, Zhang J. RASS: a web server for RNA alignment in the joint sequence-structure space. Nucleic Acids Res 2014; 42:W377-81. [PMID: 24831547 PMCID: PMC4086137 DOI: 10.1093/nar/gku429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Comparison of ribonucleic acid (RNA) molecules is important for revealing their
evolutionary relationships, predicting their functions and predicting their
structures. Many methods have been developed for comparing RNAs using either
sequence or three-dimensional (3D) structure (backbone geometry) information.
Sequences and 3D structures contain non-overlapping sets of information that
both determine RNA functions. When comparing RNA 3D structures, both types of
information need to be taken into account. However, few methods compare RNA
structures using both sequence and 3D structure information. Recently, we have
developed a new method based on elastic shape analysis (ESA) that compares RNA
molecules by combining both sequence and 3D structure information. ESA treats
RNA structures as 3D curves with sequence information encoded on additional
coordinates so that the alignment can be performed in the joint
sequence-structure space. The similarity between two RNA molecules is quantified
by a formal distance, geodesic distance. In this study, we implement a web
server for the method, called RASS, to make it publicly available to research
community. The web server is located at http://cloud.stat.fsu.edu/RASS/.
Collapse
Affiliation(s)
- Gewen He
- Department of Computer Science, Florida State University, Tallahassee, FL 32306, USA
| | - Albert Steppi
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Laborde
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Anuj Srivastava
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Peixiang Zhao
- Department of Computer Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
18
|
Rahrig RR, Petrov AI, Leontis NB, Zirbel CL. R3D Align web server for global nucleotide to nucleotide alignments of RNA 3D structures. Nucleic Acids Res 2013; 41:W15-21. [PMID: 23716643 PMCID: PMC3692076 DOI: 10.1093/nar/gkt417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The R3D Align web server provides online access to ‘RNA 3D Align’ (R3D Align), a method for producing accurate nucleotide-level structural alignments of RNA 3D structures. The web server provides a streamlined and intuitive interface, input data validation and output that is more extensive and easier to read and interpret than related servers. The R3D Align web server offers a unique Gallery of Featured Alignments, providing immediate access to pre-computed alignments of large RNA 3D structures, including all ribosomal RNAs, as well as guidance on effective use of the server and interpretation of the output. By accessing the non-redundant lists of RNA 3D structures provided by the Bowling Green State University RNA group, R3D Align connects users to structure files in the same equivalence class and the best-modeled representative structure from each group. The R3D Align web server is freely accessible at http://rna.bgsu.edu/r3dalign/.
Collapse
Affiliation(s)
- Ryan R Rahrig
- Department of Mathematics and Statistics, Ohio Northern University, Ada, OH 45810, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
The recent discoveries of regulatory non-coding RNAs changed our view of RNA as a simple information transfer molecule. Understanding the architecture and function of active RNA molecules requires methods for comparing and analyzing their 3D structures. While structural alignment of short RNAs is achievable in a reasonable amount of time, large structures represent much bigger challenge. Here, we present the SETTER web server for the RNA structure pairwise comparison utilizing the SETTER (SEcondary sTructure-based TERtiary Structure Similarity Algorithm) algorithm. The SETTER method divides an RNA structure into the set of non-overlapping structural elements called generalized secondary structure units (GSSUs). The SETTER algorithm scales as O(n2) with the size of a GSSUs and as O(n) with the number of GSSUs in the structure. This scaling gives SETTER its high speed as the average size of the GSSU remains constant irrespective of the size of the structure. However, the favorable speed of the algorithm does not compromise its accuracy. The SETTER web server together with the stand-alone implementation of the SETTER algorithm are freely accessible at http://siret.cz/setter.
Collapse
Affiliation(s)
- Petr Cech
- Laboratory of Informatics and Chemistry, Faculty of Chemical Technology, Prague, Czech Republic
| | | | | |
Collapse
|