1
|
Wang Y, Li X, Liu N, Wei S, Wang J, Qin F, Suo B. The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis. BMC PLANT BIOLOGY 2020; 20:96. [PMID: 32131734 PMCID: PMC7057492 DOI: 10.1186/s12870-020-2297-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUNDS The perturbance of chloroplast proteins is a major cause of photosynthesis inhibition under drought stress. The exogenous application of 5-aminolevulinic acid (ALA) mitigates the damage caused by drought stress, protecting plant growth and development, but the regulatory mechanism behind this process remains obscure. RESULTS Wheat seedlings were drought treated, and the iTRAQ-based proteomic approach was employed to assess the difference in chloroplast protein content caused by exogenous ALA. A total of 9499 peptides, which could be classified into 2442 protein groups, were identified with ≤0.01 FDR. Moreover, the contents of 87 chloroplast proteins was changed by drought stress alone compared to that of the drought-free control, while the contents of 469 was changed by exogenous ALA application under drought stress compared to that of drought stress alone. The Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results suggested that the ALA pretreatment adjusted some biological pathways, such as metabolic pathways and pathways involved in photosynthesis and ribosomes, to enhance the drought resistance of chloroplasts. Furthermore, the drought-promoted H2O2 accumulation and O2- production in chloroplasts were alleviated by the exogenous pretreatment of ALA, while peroxidase (POD) and glutathione peroxidase (GPX) activities were upregulated, which agreed with the chloroplast proteomic data. We suggested that ALA promoted reactive oxygen species (ROS) scavenging in chloroplasts by regulating enzymatic processes. CONCLUSIONS Our results from chloroplast proteomics extend the understanding of the mechanisms employed by exogenous ALA to defend against drought stress in wheat.
Collapse
Affiliation(s)
- Yuexia Wang
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Xiaoyan Li
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Nana Liu
- College of Science, China Agricultural University, Beijing, 100193 China
| | - Shimei Wei
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Jianan Wang
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Fujun Qin
- Department of Pathology, University of Virginia, Charlottesville, VA 22908 USA
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| |
Collapse
|
2
|
Zheng L, Liu L, Lin L, Tang H, Fan X, Lin H, Li X. Cecal CircRNAs Are Associated With the Response to Salmonella Enterica Serovar Enteritidis Inoculation in the Chicken. Front Immunol 2019; 10:1186. [PMID: 31214170 PMCID: PMC6554294 DOI: 10.3389/fimmu.2019.01186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/09/2019] [Indexed: 12/01/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNA, which is different from linear RNA. CircRNA is an RNA molecule with a closed loop structure formed by reverse splicing. CircRNAs have been studied in several organisms, however, the circRNAs associated with the response to Salmonella enterica serovar Enteritidis (SE) inoculation in chickens are still unclear. In the current study, Jining Bairi chickens were inoculated with SE. CircRNAs involved in the response to SE inoculation were identified through next-generation sequencing. Our results showed that there were 5,118 circRNAs identified in the control and treated groups. There were 62 circRNAs significantly differentially expressed following SE inoculation. Functional classification revealed that those significantly differentially expressed circRNAs were associated with immune system process, rhythmic process and signaling following SE inoculation. CircRNAs NC_006091.4: 65510578|65515090, NC_006099.4: 16132825|16236906, and NC_006099.4: 15993284|16006290 play important roles in the response to SE inoculation. The findings in the current study provide evidence that circRNA alterations are involved in the response to SE inoculation in the chicken.
Collapse
Affiliation(s)
- Linna Zheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Lili Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xinzhong Fan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xianyao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
3
|
Suo B, Yang H, Wang Y, Lv H, Li Z, Xu C, Ai Z. Comparative Proteomic and Morphological Change Analyses of Staphylococcus aureus During Resuscitation From Prolonged Freezing. Front Microbiol 2018; 9:866. [PMID: 29774015 PMCID: PMC5943506 DOI: 10.3389/fmicb.2018.00866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 04/13/2018] [Indexed: 12/05/2022] Open
Abstract
When frozen, Staphylococcus aureus survives in a sublethally injured state. However, S. aureus can recover at a suitable temperature, which poses a threat to food safety. To elucidate the resuscitation mechanism of freezing survived S. aureus, we used cells stored at -18°C for 90 days as controls. After resuscitating the survived cells at 37°C, the viable cell numbers were determined on tryptic soy agar with 0.6% yeast extract (TSAYE), and the non-injured-cell numbers were determined on TSAYE supplemented with 10% NaCl. The results showed that the total viable cell number did not increase within the first 3 h of resuscitation, but the osmotic regulation ability of freezing survived cells gradually recovered to the level of healthy cells, which was evidenced by the lack of difference between the two samples seen by differential cell enumeration. Scanning electron microscopy (SEM) showed that, compared to late exponential stage cells, some frozen survived cells underwent splitting and cell lysis due to deep distortion and membrane rupture. Transmission electron microscopy (TEM) showed that, in most of the frozen survived cells, the nucleoids (low electronic density area) were loose, and the cytoplasmic matrices (high electronic density area) were sparse. Additionally, a gap was seen to form between the cytoplasmic membranes and the cell walls in the frozen survived cells. The morphological changes were restored when the survived cells were resuscitated at 37°C. We also analyzed the differential proteome after resuscitation using non-labeled high-performance liquid chromatography–mass spectrometry (HPLC-MS). The results showed that, compared with freezing survived S. aureus cells, the cells resuscitated for 1 h had 45 upregulated and 73 downregulated proteins. The differentially expressed proteins were functionally categorized by gene ontology enrichment, KEGG pathway, and STRING analyses. Cell membrane synthesis-related proteins, oxidative stress resistance-related proteins, metabolism-related proteins, and virulence factors exhibited distinct expression patterns during resuscitation. These findings have implications in the understanding of the resuscitation mechanism of freezing survived S. aureus, which may facilitate the development of novel technologies for improved detection and control of foodborne pathogens in frozen food.
Collapse
Affiliation(s)
- Biao Suo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China.,Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Engineering Research Center for Cold-Chain Food, Henan Agricultural University, Zhengzhou, China
| | - Hua Yang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yuexia Wang
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China
| | - Haipeng Lv
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhen Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China
| | - Chao Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Staple Grain Processing, Ministry of Agriculture, Zhengzhou, China.,Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Engineering Research Center for Cold-Chain Food, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Petrey D, Chen TS, Deng L, Garzon JI, Hwang H, Lasso G, Lee H, Silkov A, Honig B. Template-based prediction of protein function. Curr Opin Struct Biol 2015; 32:33-8. [PMID: 25678152 DOI: 10.1016/j.sbi.2015.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
We discuss recent approaches for structure-based protein function annotation. We focus on template-based methods where the function of a query protein is deduced from that of a template for which both the structure and function are known. We describe the different ways of identifying a template. These are typically based on sequence analysis but new methods based on purely structural similarity are also being developed that allow function annotation based on structural relationships that cannot be recognized by sequence. The growing number of available structures of known function, improved homology modeling techniques and new developments in the use of structure allow template-based methods to be applied on a proteome-wide scale and in many different biological contexts. This progress significantly expands the range of applicability of structural information in function annotation to a level that previously was only achievable by sequence comparison.
Collapse
Affiliation(s)
- Donald Petrey
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States.
| | - T Scott Chen
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Lei Deng
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Jose Ignacio Garzon
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Howook Hwang
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Gorka Lasso
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Hunjoong Lee
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Antonina Silkov
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| | - Barry Honig
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Department of Systems Biology, Center for Computational Biology and Bioinformatics, 1130 St. Nicholas Avenue, Room 815, New York, NY 10032, United States
| |
Collapse
|
5
|
Erdin S, Venner E, Lisewski AM, Lichtarge O. Function prediction from networks of local evolutionary similarity in protein structure. BMC Bioinformatics 2013; 14 Suppl 3:S6. [PMID: 23514548 PMCID: PMC3584919 DOI: 10.1186/1471-2105-14-s3-s6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Annotating protein function with both high accuracy and sensitivity remains a major challenge in structural genomics. One proven computational strategy has been to group a few key functional amino acids into templates and search for these templates in other protein structures, so as to transfer function when a match is found. To this end, we previously developed Evolutionary Trace Annotation (ETA) and showed that diffusing known annotations over a network of template matches on a structural genomic scale improved predictions of function. In order to further increase sensitivity, we now let each protein contribute multiple templates rather than just one, and also let the template size vary. RESULTS Retrospective benchmarks in 605 Structural Genomics enzymes showed that multiple templates increased sensitivity by up to 14% when combined with single template predictions even as they maintained the accuracy over 91%. Diffusing function globally on networks of single and multiple template matches marginally increased the area under the ROC curve over 0.97, but in a subset of proteins that could not be annotated by ETA, the network approach recovered annotations for the most confident 20-23 of 91 cases with 100% accuracy. CONCLUSIONS We improve the accuracy and sensitivity of predictions by using multiple templates per protein structure when constructing networks of ETA matches and diffusing annotations.
Collapse
Affiliation(s)
- Serkan Erdin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Eric Venner
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Andreas Martin Lisewski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|