1
|
Meher PK, Pradhan UK, Sethi PL, Naha S, Gupta A, Parsad R. PredPSP: a novel computational tool to discover pathway-specific photosynthetic proteins in plants. PLANT MOLECULAR BIOLOGY 2024; 114:106. [PMID: 39316155 DOI: 10.1007/s11103-024-01500-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
Photosynthetic proteins play a crucial role in agricultural productivity by harnessing light energy for plant growth. Understanding these proteins, especially within C3 and C4 pathways, holds promise for improving crops in challenging environments. Despite existing models, a comprehensive computational framework specifically targeting plant photosynthetic proteins is lacking. The underutilization of plant datasets in computational algorithms accentuates the gap this study aims to fill by introducing a novel sequence-based computational method for identifying these proteins. The scope of this study encompassed diverse plant species, ensuring comprehensive representation across C3 and C4 pathways. Utilizing six deep learning models and seven shallow learning algorithms, paired with six sequence-derived feature sets followed by feature selection strategy, this study developed a comprehensive model for prediction of plant-specific photosynthetic proteins. Following 5-fold cross-validation analysis, LightGBM with 65 and 90 LGBM-VIM selected features respectively emerged as the best models for C3 (auROC: 91.78%, auPRC: 92.55%) and C4 (auROC: 99.05%, auPRC: 99.18%) plants. Validation using an independent dataset confirmed the robustness of the proposed model for both C3 (auROC: 87.23%, auPRC: 88.40%) and C4 (auROC: 92.83%, auPRC: 92.29%) categories. Comparison with existing methods demonstrated the superiority of the proposed model in predicting plant-specific photosynthetic proteins. This study further established a free online prediction server PredPSP ( https://iasri-sg.icar.gov.in/predpsp/ ) to facilitate ongoing efforts for identifying photosynthetic proteins in C3 and C4 plants. Being first of its kind, this study offers valuable insights into predicting plant-specific photosynthetic proteins which holds significant implications for plant biology.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India.
| | - Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Padma Lochan Sethi
- Department of Bioinformatics, Odisha University of Agriculture & Technology, Bhubaneswar, 751003, Odisha, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| |
Collapse
|
2
|
Charoenkwan P, Waramit S, Chumnanpuen P, Schaduangrat N, Shoombuatong W. TROLLOPE: A novel sequence-based stacked approach for the accelerated discovery of linear T-cell epitopes of hepatitis C virus. PLoS One 2023; 18:e0290538. [PMID: 37624802 PMCID: PMC10456195 DOI: 10.1371/journal.pone.0290538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a concerning health issue that causes chronic liver diseases. Despite many successful therapeutic outcomes, no effective HCV vaccines are currently available. Focusing on T cell activity, the primary effector for HCV clearance, T cell epitopes of HCV (TCE-HCV) are considered promising elements to accelerate HCV vaccine efficacy. Thus, accurate and rapid identification of TCE-HCVs is recommended to obtain more efficient therapy for chronic HCV infection. In this study, a novel sequence-based stacked approach, termed TROLLOPE, is proposed to accurately identify TCE-HCVs from sequence information. Specifically, we employed 12 different sequence-based feature descriptors from heterogeneous perspectives, such as physicochemical properties, composition-transition-distribution information and composition information. These descriptors were used in cooperation with 12 popular machine learning (ML) algorithms to create 144 base-classifiers. To maximize the utility of these base-classifiers, we used a feature selection strategy to determine a collection of potential base-classifiers and integrated them to develop the meta-classifier. Comprehensive experiments based on both cross-validation and independent tests demonstrated the superior predictive performance of TROLLOPE compared with conventional ML classifiers, with cross-validation and independent test accuracies of 0.745 and 0.747, respectively. Finally, a user-friendly online web server of TROLLOPE (http://pmlabqsar.pythonanywhere.com/TROLLOPE) has been developed to serve research efforts in the large-scale identification of potential TCE-HCVs for follow-up experimental verification.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Sajee Waramit
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Zaitzeff A, Leiby N, Motta FC, Haase SB, Singer JM. Improved datasets and evaluation methods for the automatic prediction of DNA-binding proteins. Bioinformatics 2021; 38:44-51. [PMID: 34415301 DOI: 10.1093/bioinformatics/btab603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Accurate automatic annotation of protein function relies on both innovative models and robust datasets. Due to their importance in biological processes, the identification of DNA-binding proteins directly from protein sequence has been the focus of many studies. However, the datasets used to train and evaluate these methods have suffered from substantial flaws. We describe some of the weaknesses of the datasets used in previous DNA-binding protein literature and provide several new datasets addressing these problems. We suggest new evaluative benchmark tasks that more realistically assess real-world performance for protein annotation models. We propose a simple new model for the prediction of DNA-binding proteins and compare its performance on the improved datasets to two previously published models. In addition, we provide extensive tests showing how the best models predict across taxa. RESULTS Our new gradient boosting model, which uses features derived from a published protein language model, outperforms the earlier models. Perhaps surprisingly, so does a baseline nearest neighbor model using BLAST percent identity. We evaluate the sensitivity of these models to perturbations of DNA-binding regions and control regions of protein sequences. The successful data-driven models learn to focus on DNA-binding regions. When predicting across taxa, the best models are highly accurate across species in the same kingdom and can provide some information when predicting across kingdoms. AVAILABILITY AND IMPLEMENTATION The data and results for this article can be found at https://doi.org/10.5281/zenodo.5153906. The code for this article can be found at https://doi.org/10.5281/zenodo.5153683. The code, data and results can also be found at https://github.com/AZaitzeff/tools_for_dna_binding_proteins.
Collapse
Affiliation(s)
| | - Nicholas Leiby
- Two Six Research, Two Six Technologies, Arlington, VA 22203, USA
| | - Francis C Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Steven B Haase
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
4
|
Sangphukieo A, Laomettachit T, Ruengjitchatchawalya M. PhotoModPlus: A web server for photosynthetic protein prediction from genome neighborhood features. PLoS One 2021; 16:e0248682. [PMID: 33730083 PMCID: PMC7968678 DOI: 10.1371/journal.pone.0248682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/03/2021] [Indexed: 11/20/2022] Open
Abstract
A new web server called PhotoModPlus is presented as a platform for predicting photosynthetic proteins via genome neighborhood networks (GNN) and genome neighborhood-based machine learning. GNN enables users to visualize the overview of the conserved neighboring genes from multiple photosynthetic prokaryotic genomes and provides functional guidance on the query input. In the platform, we also present a new machine learning model utilizing genome neighborhood features for predicting photosynthesis-specific functions based on 24 prokaryotic photosynthesis-related GO terms, namely PhotoModGO. The new model performed better than the sequence-based approaches with an F1 measure of 0.872, based on nested five-fold cross-validation. Finally, we demonstrated the applications of the webserver and the new model in the identification of novel photosynthetic proteins. The server is user-friendly, compatible with all devices, and available at bicep.kmutt.ac.th/photomod.
Collapse
Affiliation(s)
- Apiwat Sangphukieo
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, Thailand
- School of Information Technology, KMUTT, Thung Khru, Bangkok, Thailand
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, Thailand
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, Thailand
- Biotechnology Program, School of Bioresources and Technology, KMUTT, Bang Khun Thian, Bangkok, Thailand
- Algal Biotechnology Research Group, Pilot Plant Development and Training Institute, KMUTT, Bang Khun Thian, Bangkok, Thailand
| |
Collapse
|
5
|
iBitter-SCM: Identification and characterization of bitter peptides using a scoring card method with propensity scores of dipeptides. Genomics 2020; 112:2813-2822. [DOI: 10.1016/j.ygeno.2020.03.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 12/21/2022]
|
6
|
Sangphukieo A, Laomettachit T, Ruengjitchatchawalya M. Photosynthetic protein classification using genome neighborhood-based machine learning feature. Sci Rep 2020; 10:7108. [PMID: 32346070 PMCID: PMC7189237 DOI: 10.1038/s41598-020-64053-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/07/2020] [Indexed: 11/08/2022] Open
Abstract
Identification of novel photosynthetic proteins is important for understanding and improving photosynthetic efficiency. Synergistically, genome neighborhood can provide additional useful information to identify photosynthetic proteins. We, therefore, expected that applying a computational approach, particularly machine learning (ML) with the genome neighborhood-based feature should facilitate the photosynthetic function assignment. Our results revealed a functional relationship between photosynthetic genes and their conserved neighboring genes observed by 'Phylo score', indicating their functions could be inferred from the genome neighborhood profile. Therefore, we created a new method for extracting patterns based on the genome neighborhood network (GNN) and applied them for the photosynthetic protein classification using ML algorithms. Random forest (RF) classifier using genome neighborhood-based features achieved the highest accuracy up to 87% in the classification of photosynthetic proteins and also showed better performance (Mathew's correlation coefficient = 0.718) than other available tools including the sequence similarity search (0.447) and ML-based method (0.361). Furthermore, we demonstrated the ability of our model to identify novel photosynthetic proteins compared to the other methods. Our classifier is available at http://bicep2.kmutt.ac.th/photomod_standalone, https://bit.ly/2S0I2Ox and DockerHub: https://hub.docker.com/r/asangphukieo/photomod.
Collapse
Affiliation(s)
- Apiwat Sangphukieo
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, 10150, Thailand
- School of Information Technology, KMUTT, Bang Mod, Thung Khru, Bangkok, 10140, Thailand
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, 10150, Thailand
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, 10150, Thailand.
- Biotechnology program, School of Bioresources and Technology, KMUTT, Bang Khun Thian, Bangkok, 10150, Thailand.
- Algal Biotechnology Research Group, Pilot Plant Development and Training Institute (PDTI), KMUTT, Bang Khun Thian, Bangkok, 10150, Thailand.
| |
Collapse
|
7
|
Weißenborn S, Walther D. Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling-A Feasibility Study. FRONTIERS IN PLANT SCIENCE 2017; 8:1831. [PMID: 29163570 PMCID: PMC5664361 DOI: 10.3389/fpls.2017.01831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/10/2017] [Indexed: 05/19/2023]
Abstract
Despite many developed experimental and computational approaches, functional gene annotation remains challenging. With the rapidly growing number of sequenced genomes, the concept of phylogenetic profiling, which predicts functional links between genes that share a common co-occurrence pattern across different genomes, has gained renewed attention as it promises to annotate gene functions based on presence/absence calls alone. We applied phylogenetic profiling to the problem of metabolic pathway assignments of plant genes with a particular focus on secondary metabolism pathways. We determined phylogenetic profiles for 40,960 metabolic pathway enzyme genes with assigned EC numbers from 24 plant species based on sequence and pathway annotation data from KEGG and Ensembl Plants. For gene sequence family assignments, needed to determine the presence or absence of particular gene functions in the given plant species, we included data of all 39 species available at the Ensembl Plants database and established gene families based on pairwise sequence identities and annotation information. Aside from performing profiling comparisons, we used machine learning approaches to predict pathway associations from phylogenetic profiles alone. Selected metabolic pathways were indeed found to be composed of gene families of greater than expected phylogenetic profile similarity. This was particularly evident for primary metabolism pathways, whereas for secondary pathways, both the available annotation in different species as well as the abstraction of functional association via distinct pathways proved limiting. While phylogenetic profile similarity was generally not found to correlate with gene co-expression, direct physical interactions of proteins were reflected by a significantly increased profile similarity suggesting an application of phylogenetic profiling methods as a filtering step in the identification of protein-protein interactions. This feasibility study highlights the potential and challenges associated with phylogenetic profiling methods for the detection of functional relationships between genes as well as the need to enlarge the set of plant genes with proven secondary metabolism involvement as well as the limitations of distinct pathways as abstractions of relationships between genes.
Collapse
|
8
|
Vasylenko T, Liou YF, Chiou PC, Chu HW, Lai YS, Chou YL, Huang HL, Ho SY. SCMBYK: prediction and characterization of bacterial tyrosine-kinases based on propensity scores of dipeptides. BMC Bioinformatics 2016; 17:514. [PMID: 28155663 PMCID: PMC5260027 DOI: 10.1186/s12859-016-1371-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Bacterial tyrosine-kinases (BY-kinases), which play an important role in numerous cellular processes, are characterized as a separate class of enzymes and share no structural similarity with their eukaryotic counterparts. However, in silico methods for predicting BY-kinases have not been developed yet. Since these enzymes are involved in key regulatory processes, and are promising targets for anti-bacterial drug design, it is desirable to develop a simple and easily interpretable predictor to gain new insights into bacterial tyrosine phosphorylation. This study proposes a novel SCMBYK method for predicting and characterizing BY-kinases. Results A dataset consisting of 797 BY-kinases and 783 non-BY-kinases was established to design the SCMBYK predictor, which achieved training and test accuracies of 97.55 and 96.73%, respectively. Furthermore, the leave-one-phylum-out method was used to predict specific bacterial phyla hosts of target sequences, gaining 97.39% average test accuracy. After analyzing SCMBYK-derived propensity scores, four characteristics of BY-kinases were determined: 1) BY-kinases tend to be composed of α-helices; 2) the amino-acid content of extracellular regions of BY-kinases is expected to be dominated by residues such as Val, Ile, Phe and Tyr; 3) BY-kinases structurally resemble nuclear proteins; 4) different domains play different roles in triggering BY-kinase activity. Conclusions The SCMBYK predictor is an effective method for identification of possible BY-kinases. Furthermore, it can be used as a part of a novel drug repurposing method, which recognizes putative BY-kinases and matches them to approved drugs. Among other results, our analysis revealed that azathioprine could suppress the virulence of M. tuberculosis, and thus be considered as a potential antibiotic for tuberculosis treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1371-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara Vasylenko
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yi-Fan Liou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Po-Chin Chiou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsiao-Wei Chu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yung-Sung Lai
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yu-Ling Chou
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hui-Ling Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,College of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan.
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,College of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan. .,Center for Bioinformatics Research, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
9
|
De-novo protein function prediction using DNA binding and RNA binding proteins as a test case. Nat Commun 2016; 7:13424. [PMID: 27869118 PMCID: PMC5121330 DOI: 10.1038/ncomms13424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 10/03/2016] [Indexed: 12/14/2022] Open
Abstract
Of the currently identified protein sequences, 99.6% have never been observed in the laboratory as proteins and their molecular function has not been established experimentally. Predicting the function of such proteins relies mostly on annotated homologs. However, this has resulted in some erroneous annotations, and many proteins have no annotated homologs. Here we propose a de-novo function prediction approach based on identifying biophysical features that underlie function. Using our approach, we discover DNA and RNA binding proteins that cannot be identified based on homology and validate these predictions experimentally. For example, FGF14, which belongs to a family of secreted growth factors was predicted to bind DNA. We verify this experimentally and also show that FGF14 is localized to the nucleus. Mutating the predicted binding site on FGF14 abrogated DNA binding. These results demonstrate the feasibility of automated de-novo function prediction based on identifying function-related biophysical features. Identification of the function of proteins is difficult when there are no structurally or biochemically characterized homologs. Here, the authors present an approach that allows the prediction of nucleic-acid binding proteins based on sequence alone, and they are able to experimentally validate their method.
Collapse
|
10
|
SCMPSP: Prediction and characterization of photosynthetic proteins based on a scoring card method. BMC Bioinformatics 2015; 16 Suppl 1:S8. [PMID: 25708243 PMCID: PMC4331707 DOI: 10.1186/1471-2105-16-s1-s8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photosynthetic proteins (PSPs) greatly differ in their structure and function as they are involved in numerous subprocesses that take place inside an organelle called a chloroplast. Few studies predict PSPs from sequences due to their high variety of sequences and structues. This work aims to predict and characterize PSPs by establishing the datasets of PSP and non-PSP sequences and developing prediction methods. RESULTS A novel bioinformatics method of predicting and characterizing PSPs based on scoring card method (SCMPSP) was used. First, a dataset consisting of 649 PSPs was established by using a Gene Ontology term GO:0015979 and 649 non-PSPs from the SwissProt database with sequence identity <= 25%.- Several prediction methods are presented based on support vector machine (SVM), decision tree J48, Bayes, BLAST, and SCM. The SVM method using dipeptide features-performed well and yielded - a test accuracy of 72.31%. The SCMPSP method uses the estimated propensity scores of 400 dipeptides - as PSPs and has a test accuracy of 71.54%, which is comparable to that of the SVM method. The derived propensity scores of 20 amino acids were further used to identify informative physicochemical properties for characterizing PSPs. The analytical results reveal the following four characteristics of PSPs: 1) PSPs favour hydrophobic side chain amino acids; 2) PSPs are composed of the amino acids prone to form helices in membrane environments; 3) PSPs have low interaction with water; and 4) PSPs prefer to be composed of the amino acids of electron-reactive side chains. CONCLUSIONS The SCMPSP method not only estimates the propensity of a sequence to be PSPs, it also discovers characteristics that further improve understanding of PSPs. The SCMPSP source code and the datasets used in this study are available at http://iclab.life.nctu.edu.tw/SCMPSP/.
Collapse
|
11
|
Barghash A, Helms V. Transferring functional annotations of membrane transporters on the basis of sequence similarity and sequence motifs. BMC Bioinformatics 2013; 14:343. [PMID: 24283849 PMCID: PMC4219331 DOI: 10.1186/1471-2105-14-343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/19/2013] [Indexed: 11/30/2022] Open
Abstract
Background Membrane transporters catalyze the transport of small solute molecules across biological barriers such as lipid bilayer membranes. Experimental identification of the transported substrates is very tedious. Once a particular transport mechanism has been identified in one organism, it is thus highly desirable to transfer this information to related transporter sequences in different organisms based on bioinformatics evidence. Results We present a thorough benchmark at which level of sequence identity membrane transporters from Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis thaliana belong to the same families of the Transporter Classification (TC) system, and at what level these membrane transporters mediate the transport of the same substrate. We found that two membrane transporter sequences from different organisms that are aligned with normalized BLAST expectation value better than E-value 1e-8 are highly likely to belong to the same TC family (F-measure around 90%). Enriched sequence motifs identified by MEME at thresholds below 1e-12 support accurate classification into TC families for about two thirds of the sequences (F-measure 80% and higher). For the comparison of transported substrates, we focused on the four largest substrate classes of amino acids, sugars, metal ions, and phosphate. At similar identity thresholds, the nature of the transported substrates was more divergent (F-measure 40 - 75% at the same thresholds) than the TC family membership. Conclusions We suggest an acceptable threshold of 1e-8 for BLAST and HMMER where at least three quarters of the sequences are classified according to the TC system with a reasonably high accuracy. Researchers who wish to apply these thresholds in their studies should multiply these thresholds by the size of the database they search against. Our findings should be useful to those who wish to transfer transporter functional annotations across species.
Collapse
Affiliation(s)
- Ahmad Barghash
- Center for Bioinformatics, Saarland University, Postfach 15 11 50, 66041 Saarbrücken, Germany.
| | | |
Collapse
|
12
|
Phosphoglycerate mutases function as reverse regulated isoenzymes in Synechococcus elongatus PCC 7942. PLoS One 2013; 8:e58281. [PMID: 23484009 PMCID: PMC3590821 DOI: 10.1371/journal.pone.0058281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Phosphoglycerate-mutase (PGM) is an ubiquitous glycolytic enzyme, which in eukaryotic cells can be found in different compartments. In prokaryotic cells, several PGMs are annotated/localized in one compartment. The identification and functional characterization of PGMs in prokaryotes is therefore important for better understanding of metabolic regulation. Here we introduce a method, based on a multi-level kinetic model of the primary carbon metabolism in cyanobacterium Synechococcus elongatus PCC 7942, that allows the identification of a specific function for a particular PGM. The strategy employs multiple parameter estimation runs in high CO2, combined with simulations testing a broad range of kinetic parameters against the changes in transcript levels of annotated PGMs. Simulations are evaluated for a match in metabolic level in low CO2, to reveal trends that can be linked to the function of a particular PGM. A one-isoenzyme scenario shows that PGM2 is a major regulator of glycolysis, while PGM1 and PGM4 make the system robust against environmental changes. Strikingly, combining two PGMs with reverse transcriptional regulation allows both features. A conclusion arising from our analysis is that a two-enzyme PGM system is required to regulate the flux between glycolysis and the Calvin-Benson cycle, while an additional PGM increases the robustness of the system.
Collapse
|