1
|
Integrative structural modeling of macromolecular complexes using Assembline. Nat Protoc 2021; 17:152-176. [PMID: 34845384 DOI: 10.1038/s41596-021-00640-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/30/2021] [Indexed: 11/08/2022]
Abstract
Integrative modeling enables structure determination of macromolecular complexes by combining data from multiple experimental sources such as X-ray crystallography, electron microscopy or cross-linking mass spectrometry. It is particularly useful for complexes not amenable to high-resolution electron microscopy-complexes that are flexible, heterogeneous or imaged in cells with cryo-electron tomography. We have recently developed an integrative modeling protocol that allowed us to model multi-megadalton complexes as large as the nuclear pore complex. Here, we describe the Assembline software package, which combines multiple programs and libraries with our own algorithms in a streamlined modeling pipeline. Assembline builds ensembles of models satisfying data from atomic structures or homology models, electron microscopy maps and other experimental data, and provides tools for their analysis. Compared with other methods, Assembline enables efficient sampling of conformational space through a multistep procedure, provides new modeling restraints and includes a unique configuration system for setting up the modeling project. Our protocol achieves exhaustive sampling in less than 100-1,000 CPU-hours even for complexes in the megadalton range. For larger complexes, resources available in institutional or public computer clusters are needed and sufficient to run the protocol. We also provide step-by-step instructions for preparing the input, running the core modeling steps and assessing modeling performance at any stage.
Collapse
|
2
|
Behkamal B, Naghibzadeh M, Saberi MR, Tehranizadeh ZA, Pagnani A, Al Nasr K. Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps. Biomolecules 2021; 11:1773. [PMID: 34944417 PMCID: PMC8698881 DOI: 10.3390/biom11121773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 01/15/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) is a structural technique that has played a significant role in protein structure determination in recent years. Compared to the traditional methods of X-ray crystallography and NMR spectroscopy, cryo-EM is capable of producing images of much larger protein complexes. However, cryo-EM reconstructions are limited to medium-resolution (~4-10 Å) for some cases. At this resolution range, a cryo-EM density map can hardly be used to directly determine the structure of proteins at atomic level resolutions, or even at their amino acid residue backbones. At such a resolution, only the position and orientation of secondary structure elements (SSEs) such as α-helices and β-sheets are observable. Consequently, finding the mapping of the secondary structures of the modeled structure (SSEs-A) to the cryo-EM map (SSEs-C) is one of the primary concerns in cryo-EM modeling. To address this issue, this study proposes a novel automatic computational method to identify SSEs correspondence in three-dimensional (3D) space. Initially, through a modeling of the target sequence with the aid of extracting highly reliable features from a generated 3D model and map, the SSEs matching problem is formulated as a 3D vector matching problem. Afterward, the 3D vector matching problem is transformed into a 3D graph matching problem. Finally, a similarity-based voting algorithm combined with the principle of least conflict (PLC) concept is developed to obtain the SSEs correspondence. To evaluate the accuracy of the method, a testing set of 25 experimental and simulated maps with a maximum of 65 SSEs is selected. Comparative studies are also conducted to demonstrate the superiority of the proposed method over some state-of-the-art techniques. The results demonstrate that the method is efficient, robust, and works well in the presence of errors in the predicted secondary structures of the cryo-EM images.
Collapse
Affiliation(s)
- Bahareh Behkamal
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Mahmoud Naghibzadeh
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Mohammad Reza Saberi
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran; (M.R.S.); (Z.A.T.)
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Zeinab Amiri Tehranizadeh
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran; (M.R.S.); (Z.A.T.)
| | - Andrea Pagnani
- Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy;
- Italian Institute for Genomic Medicine, IRCCS Candiolo, SP-142, I-10060 Candiolo, Italy
- INFN, Sezione di Torino, I-10125 Torino, Italy
| | - Kamal Al Nasr
- Department of Computer Science, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
3
|
Wang X, Alnabati E, Aderinwale TW, Maddhuri Venkata Subramaniya SR, Terashi G, Kihara D. Detecting protein and DNA/RNA structures in cryo-EM maps of intermediate resolution using deep learning. Nat Commun 2021; 12:2302. [PMID: 33863902 PMCID: PMC8052361 DOI: 10.1038/s41467-021-22577-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
An increasing number of density maps of macromolecular structures, including proteins and DNA/RNA complexes, have been determined by cryo-electron microscopy (cryo-EM). Although lately maps at a near-atomic resolution are routinely reported, there are still substantial fractions of maps determined at intermediate or low resolutions, where extracting structure information is not trivial. Here, we report a new computational method, Emap2sec+, which identifies DNA or RNA as well as the secondary structures of proteins in cryo-EM maps of 5 to 10 Å resolution. Emap2sec+ employs the deep Residual convolutional neural network. Emap2sec+ assigns structural labels with associated probabilities at each voxel in a cryo-EM map, which will help structure modeling in an EM map. Emap2sec+ showed stable and high assignment accuracy for nucleotides in low resolution maps and improved performance for protein secondary structure assignments than its earlier version when tested on simulated and experimental maps.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Eman Alnabati
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Tunde W Aderinwale
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | | | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Kyrilis FL, Belapure J, Kastritis PL. Detecting Protein Communities in Native Cell Extracts by Machine Learning: A Structural Biologist's Perspective. Front Mol Biosci 2021; 8:660542. [PMID: 33937337 PMCID: PMC8082361 DOI: 10.3389/fmolb.2021.660542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Native cell extracts hold great promise for understanding the molecular structure of ordered biological systems at high resolution. This is because higher-order biomolecular interactions, dubbed as protein communities, may be retained in their (near-)native state, in contrast to extensively purifying or artificially overexpressing the proteins of interest. The distinct machine-learning approaches are applied to discover protein-protein interactions within cell extracts, reconstruct dedicated biological networks, and report on protein community members from various organisms. Their validation is also important, e.g., by the cross-linking mass spectrometry or cell biology methods. In addition, the cell extracts are amenable to structural analysis by cryo-electron microscopy (cryo-EM), but due to their inherent complexity, sorting structural signatures of protein communities derived by cryo-EM comprises a formidable task. The application of image-processing workflows inspired by machine-learning techniques would provide improvements in distinguishing structural signatures, correlating proteomic and network data to structural signatures and subsequently reconstructed cryo-EM maps, and, ultimately, characterizing unidentified protein communities at high resolution. In this review article, we summarize recent literature in detecting protein communities from native cell extracts and identify the remaining challenges and opportunities. We argue that the progress in, and the integration of, machine learning, cryo-EM, and complementary structural proteomics approaches would provide the basis for a multi-scale molecular description of protein communities within native cell extracts.
Collapse
Affiliation(s)
- Fotis L. Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jaydeep Belapure
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Panagiotis L. Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Protein secondary structure detection in intermediate-resolution cryo-EM maps using deep learning. Nat Methods 2019; 16:911-917. [PMID: 31358979 PMCID: PMC6717539 DOI: 10.1038/s41592-019-0500-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
Abstract
An increasing number of protein structures have been solved by cryo-electron microscopy (cryo-EM). Although structures determined at near-atomic resolution are now routinely reported, many density maps are still determined at an intermediate resolution, where extracting structure information is still a challenge. We have developed a computational method, Emap2sec, which identifies the secondary structures of proteins (α helices, β sheets, and other structures) in an EM map of 5 to 10 Å resolution. Emap2sec uses a 3D deep convolutional neural network to assign secondary structure to each grid point in an EM map. We tested Emap2sec on 6.0 and 10.0 Å resolution EM maps simulated from 34 structures, as well as on 43 maps determined experimentally at 5.0 to 9.5 Å resolution. Emap2sec was able to clearly identify the secondary structures in many maps tested, and showed substantially better performance than existing methods.
Collapse
|
6
|
Bonomi M, Vendruscolo M. Determination of protein structural ensembles using cryo-electron microscopy. Curr Opin Struct Biol 2019; 56:37-45. [DOI: 10.1016/j.sbi.2018.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
7
|
Simultaneous Determination of Protein Structure and Dynamics Using Cryo-Electron Microscopy. Biophys J 2019; 114:1604-1613. [PMID: 29642030 PMCID: PMC5954442 DOI: 10.1016/j.bpj.2018.02.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/05/2018] [Accepted: 02/20/2018] [Indexed: 11/21/2022] Open
Abstract
Cryo-electron microscopy is rapidly emerging as a powerful technique to determine the structures of complex macromolecular systems elusive to other techniques. Because many of these systems are highly dynamical, characterizing their movements is also a crucial step to unravel their biological functions. To achieve this goal, we report an integrative modeling approach to simultaneously determine structure and dynamics of macromolecular systems from cryo-electron microscopy density maps. By quantifying the level of noise in the data and dealing with their ensemble-averaged nature, this approach enables the integration of multiple sources of information to model ensembles of structures and infer their populations. We illustrate the method by characterizing structure and dynamics of the integral membrane receptor STRA6, thus providing insights into the mechanisms by which it interacts with retinol binding protein and translocates retinol across the membrane.
Collapse
|
8
|
Bonomi M, Hanot S, Greenberg CH, Sali A, Nilges M, Vendruscolo M, Pellarin R. Bayesian Weighing of Electron Cryo-Microscopy Data for Integrative Structural Modeling. Structure 2018; 27:175-188.e6. [PMID: 30393052 DOI: 10.1016/j.str.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Cryo-electron microscopy (cryo-EM) has become a mainstream technique for determining the structures of complex biological systems. However, accurate integrative structural modeling has been hampered by the challenges in objectively weighing cryo-EM data against other sources of information due to the presence of random and systematic errors, as well as correlations, in the data. To address these challenges, we introduce a Bayesian scoring function that efficiently and accurately ranks alternative structural models of a macromolecular system based on their consistency with a cryo-EM density map as well as other experimental and prior information. The accuracy of this approach is benchmarked using complexes of known structure and illustrated in three applications: the structural determination of the GroEL/GroES, RNA polymerase II, and exosome complexes. The approach is implemented in the open-source Integrative Modeling Platform (http://integrativemodeling.org), thus enabling integrative structure determination by combining cryo-EM data with other sources of information.
Collapse
Affiliation(s)
| | - Samuel Hanot
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France
| | - Charles H Greenberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, CA 94158, USA
| | - Michael Nilges
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France
| | | | - Riccardo Pellarin
- Institut Pasteur, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR 3528, C3BI USR 3756 CNRS & IP, Paris, France.
| |
Collapse
|
9
|
Yang YJ, Wang S, Zhang B, Shen HB. Resolution Measurement from a Single Reconstructed Cryo-EM Density Map with Multiscale Spectral Analysis. J Chem Inf Model 2018; 58:1303-1311. [DOI: 10.1021/acs.jcim.8b00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu-Jiao Yang
- Institute of Image Processing and Pattern Recognition and MOE Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuai Wang
- Institute of Image Processing and Pattern Recognition and MOE Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Biao Zhang
- Institute of Image Processing and Pattern Recognition and MOE Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition and MOE Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Joseph AP, Lagerstedt I, Patwardhan A, Topf M, Winn M. Improved metrics for comparing structures of macromolecular assemblies determined by 3D electron-microscopy. J Struct Biol 2017; 199:12-26. [PMID: 28552721 PMCID: PMC5479444 DOI: 10.1016/j.jsb.2017.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/28/2022]
Abstract
Recent developments in 3-dimensional electron microcopy (3D-EM) techniques and a concomitant drive to look at complex molecular structures, have led to a rapid increase in the amount of volume data available for biomolecules. This creates a demand for better methods to analyse the data, including improved scores for comparison, classification and integration of data at different resolutions. To this end, we developed and evaluated a set of scoring functions that compare 3D-EM volumes. To test our scores we used a benchmark set of volume alignments derived from the Electron Microscopy Data Bank. We find that the performance of different scores vary with the map-type, resolution and the extent of overlap between volumes. Importantly, adding the overlap information to the local scoring functions can significantly improve their precision and accuracy in a range of resolutions. A combined score involving the local mutual information and overlap (LMI_OV) performs best overall, irrespective of the map category, resolution or the extent of overlap, and we recommend this score for general use. The local mutual information score itself is found to be more discriminatory than cross-correlation coefficient for intermediate-to-low resolution maps or when the map size and density distribution differ significantly. For comparing map surfaces, we implemented two filters to detect the surface points, including one based on the 'extent of surface exposure'. We show that scores that compare surfaces are useful at low resolutions and for maps with evident surface features. All the scores discussed are implemented in TEMPy (http://tempy.ismb.lon.ac.uk/).
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom; Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ingvar Lagerstedt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom; Computational Chemistry and Cheminformatics, Lilly UK, Windlesham GU20 6PH, United Kingdom
| | - Ardan Patwardhan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.
| |
Collapse
|
11
|
Segura J, Sanchez-Garcia R, Tabas-Madrid D, Cuenca-Alba J, Sorzano COS, Carazo JM. 3DIANA: 3D Domain Interaction Analysis: A Toolbox for Quaternary Structure Modeling. Biophys J 2016; 110:766-75. [PMID: 26772592 PMCID: PMC4775853 DOI: 10.1016/j.bpj.2015.11.3519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Electron microscopy (EM) is experiencing a revolution with the advent of a new generation of Direct Electron Detectors, enabling a broad range of large and flexible structures to be resolved well below 1 nm resolution. Although EM techniques are evolving to the point of directly obtaining structural data at near-atomic resolution, for many molecules the attainable resolution might not be enough to propose high-resolution structural models. However, accessing information on atomic coordinates is a necessary step toward a deeper understanding of the molecular mechanisms that allow proteins to perform specific tasks. For that reason, methods for the integration of EM three-dimensional maps with x-ray and NMR structural data are being developed, a modeling task that is normally referred to as fitting, resulting in the so called hybrid models. In this work, we present a novel application—3DIANA—specially targeted to those cases in which the EM map resolution is medium or low and additional experimental structural information is scarce or even lacking. In this way, 3DIANA statistically evaluates proposed/potential contacts between protein domains, presents a complete catalog of both structurally resolved and predicted interacting regions involving these domains and, finally, suggests structural templates to model the interaction between them. The evaluation of the proposed interactions is computed with DIMERO, a new method that scores physical binding sites based on the topology of protein interaction networks, which has recently shown the capability to increase by 200% the number of domain-domain interactions predicted in interactomes as compared to previous approaches. The new application displays the information at a sequence and structural level and is accessible through a web browser or as a Chimera plugin at http://3diana.cnb.csic.es.
Collapse
Affiliation(s)
- Joan Segura
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain.
| | - Ruben Sanchez-Garcia
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Daniel Tabas-Madrid
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Jesus Cuenca-Alba
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Carlos Oscar S Sorzano
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Jose Maria Carazo
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| |
Collapse
|
12
|
DiMaio F, Song Y, Li X, Brunner MJ, Xu C, Conticello V, Egelman E, Marlovits T, Cheng Y, Baker D. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat Methods 2015; 12:361-365. [PMID: 25707030 PMCID: PMC4382417 DOI: 10.1038/nmeth.3286] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022]
Abstract
We describe a general approach for refining protein structure models on the basis of cryo-electron microscopy maps with near-atomic resolution. The method integrates Monte Carlo sampling with local density-guided optimization, Rosetta all-atom refinement and real-space B-factor fitting. In tests on experimental maps of three different systems with 4.5-Å resolution or better, the method consistently produced models with atomic-level accuracy largely independently of starting-model quality, and it outperformed the molecular dynamics-based MDFF method. Cross-validated model quality statistics correlated with model accuracy over the three test systems.
Collapse
Affiliation(s)
- Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Cyrus Biotechnology, Inc., Seattle, WA, USA
| | - Xueming Li
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Matthias J Brunner
- Center for Structural Systems Biology (CSSB) University Medical Center Eppendorf-Hamburg (UKE), Hamburg, Germany.,Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Chunfu Xu
- Department of Chemistry, Emory University, Atlanta, GA 30322
| | | | - Edward Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Thomas Marlovits
- Center for Structural Systems Biology (CSSB) University Medical Center Eppendorf-Hamburg (UKE), Hamburg, Germany.,Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.,Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
López-Blanco JR, Chacón P. Structural modeling from electron microscopy data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- José Ramón López-Blanco
- Department of Biological Physical Chemistry; Rocasolano Physical Chemistry Institute, CSIC; Madrid Spain
| | - Pablo Chacón
- Department of Biological Physical Chemistry; Rocasolano Physical Chemistry Institute, CSIC; Madrid Spain
| |
Collapse
|
14
|
Kubrycht J, Sigler K, Souček P, Hudeček J. Structures composing protein domains. Biochimie 2013; 95:1511-24. [DOI: 10.1016/j.biochi.2013.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/02/2013] [Indexed: 12/21/2022]
|