1
|
Khamis AM, Motwalli O, Oliva R, Jankovic BR, Medvedeva YA, Ashoor H, Essack M, Gao X, Bajic VB. A novel method for improved accuracy of transcription factor binding site prediction. Nucleic Acids Res 2018; 46:e72. [PMID: 29617876 PMCID: PMC6037060 DOI: 10.1093/nar/gky237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/01/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying transcription factor (TF) binding sites (TFBSs) is important in the computational inference of gene regulation. Widely used computational methods of TFBS prediction based on position weight matrices (PWMs) usually have high false positive rates. Moreover, computational studies of transcription regulation in eukaryotes frequently require numerous PWM models of TFBSs due to a large number of TFs involved. To overcome these problems we developed DRAF, a novel method for TFBS prediction that requires only 14 prediction models for 232 human TFs, while at the same time significantly improves prediction accuracy. DRAF models use more features than PWM models, as they combine information from TFBS sequences and physicochemical properties of TF DNA-binding domains into machine learning models. Evaluation of DRAF on 98 human ChIP-seq datasets shows on average 1.54-, 1.96- and 5.19-fold reduction of false positives at the same sensitivities compared to models from HOCOMOCO, TRANSFAC and DeepBind, respectively. This observation suggests that one can efficiently replace the PWM models for TFBS prediction by a small number of DRAF models that significantly improve prediction accuracy. The DRAF method is implemented in a web tool and in a stand-alone software freely available at http://cbrc.kaust.edu.sa/DRAF.
Collapse
Affiliation(s)
- Abdullah M Khamis
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955–6900, Saudi Arabia
| | - Olaa Motwalli
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955–6900, Saudi Arabia
| | - Romina Oliva
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955–6900, Saudi Arabia
- Department of Sciences and Technologies, University ‘Parthenope’ of Naples, Centro Direzionale Isola C4 80143, Naples, Italy
| | - Boris R Jankovic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955–6900, Saudi Arabia
| | - Yulia A Medvedeva
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955–6900, Saudi Arabia
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Science, 117312 Moscow, Russia
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, 119991 Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Moscow Region, Russia
| | - Haitham Ashoor
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955–6900, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955–6900, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955–6900, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955–6900, Saudi Arabia
| |
Collapse
|
2
|
Qin W, Zhao G, Carson M, Jia C, Lu H. Knowledge-based three-body potential for transcription factor binding site prediction. IET Syst Biol 2016; 10:23-9. [PMID: 26816396 DOI: 10.1049/iet-syb.2014.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A structure-based statistical potential is developed for transcription factor binding site (TFBS) prediction. Besides the direct contact between amino acids from TFs and DNA bases, the authors also considered the influence of the neighbouring base. This three-body potential showed better discriminate powers than the two-body potential. They validate the performance of the potential in TFBS identification, binding energy prediction and binding mutation prediction.
Collapse
Affiliation(s)
- Wenyi Qin
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Guijun Zhao
- Key Laboratory of Molecular Embryology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, People's Republic of China
| | - Matthew Carson
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Caiyan Jia
- School of Computer and Information Technology & Beijing Key Lab of Traffic Data Analysis, Beijing Jiaotong University, Beijing, People's Republic of China
| | - Hui Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Fortin CH, Schulze KV, Babbitt GA. TRX-LOGOS - a graphical tool to demonstrate DNA information content dependent upon backbone dynamics in addition to base sequence. SOURCE CODE FOR BIOLOGY AND MEDICINE 2015; 10:10. [PMID: 26413153 PMCID: PMC4583169 DOI: 10.1186/s13029-015-0040-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/11/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing and viewing Shannon information content calculated at single nucleobases in a traditional sequence logo plot. Thus, sequence logos plots are severely limited in that they convey no explicit information regarding the structural dynamics of DNA backbone, a feature often critical to binding specificity. SOFTWARE AND IMPLEMENTATION We present TRX-LOGOS, an R software package and Perl wrapper code that interfaces the JASPAR database for computational regulatory genomics. TRX-LOGOS extends the traditional sequence logo plot to include Shannon information content calculated with regard to the dinucleotide-based BI-BII conformation shifts in phosphate linkages on the DNA backbone, thereby adding a visual measure of intrinsic DNA flexibility that can be critical for many DNA-protein interactions. TRX-LOGOS is available as an R graphics module offered at both SourceForge and as a download supplement at this journal. RESULTS To demonstrate the general utility of TRX logo plots, we first calculated the information content for 416 Saccharomyces cerevisiae transcription factor binding sites functionally confirmed in the Yeastract database and matched to previously published yeast genomic alignments. We discovered that flanking regions contain significantly elevated information content at phosphate linkages than can be observed at nucleobases. We also examined broader transcription factor classifications defined by the JASPAR database, and discovered that many general signatures of transcription factor binding are locally more information rich at the level of DNA backbone dynamics than nucleobase sequence. We used TRX-logos in combination with MEGA 6.0 software for molecular evolutionary genetics analysis to visually compare the human Forkhead box/FOX protein evolution to its binding site evolution. We also compared the DNA binding signatures of human TP53 tumor suppressor determined by two different laboratory methods (SELEX and ChIP-seq). Further analysis of the entire yeast genome, center aligned at the start codon, also revealed a distinct sequence-independent 3 bp periodic pattern in information content, present only in coding region, and perhaps indicative of the non-random organization of the genetic code. CONCLUSION TRX-LOGOS is useful in any situation in which important information content in DNA can be better visualized at the positions of phosphate linkages (i.e. dinucleotides) where the dynamic properties of the DNA backbone functions to facilitate DNA-protein interaction.
Collapse
Affiliation(s)
- Connor H Fortin
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623 USA
| | - Katharina V Schulze
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Gregory A Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623 USA
| |
Collapse
|