1
|
Kühnl F, Stadler PF, Findeiß S. Assessing the Quality of Cotranscriptional Folding Simulations. Methods Mol Biol 2024; 2726:347-376. [PMID: 38780738 DOI: 10.1007/978-1-0716-3519-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Structural changes in RNAs are an important contributor to controlling gene expression not only at the posttranscriptional stage but also during transcription. A subclass of riboswitches and RNA thermometers located in the 5' region of the primary transcript regulates the downstream functional unit - usually an ORF - through premature termination of transcription. Not only such elements occur naturally, but they are also attractive devices in synthetic biology. The possibility to design such riboswitches or RNA thermometers is thus of considerable practical interest. Since these functional RNA elements act already during transcription, it is important to model and understand the dynamics of folding and, in particular, the formation of intermediate structures concurrently with transcription. Cotranscriptional folding simulations are therefore an important step to verify the functionality of design constructs before conducting expensive and labor-intensive wet lab experiments. For RNAs, full-fledged molecular dynamics simulations are far beyond practical reach because of both the size of the molecules and the timescales of interest. Even at the simplified level of secondary structures, further approximations are necessary. The BarMap approach is based on representing the secondary structure landscape for each individual transcription step by a coarse-grained representation that only retains a small set of low-energy local minima and the energy barriers between them. The folding dynamics between two transcriptional elongation steps is modeled as a Markov process on this representation. Maps between pairs of consecutive coarse-grained landscapes make it possible to follow the folding process as it changes in response to transcription elongation. In its original implementation, the BarMap software provides a general framework to investigate RNA folding dynamics on temporally changing landscapes. It is, however, difficult to use in particular for specific scenarios such as cotranscriptional folding. To overcome this limitation, we developed the user-friendly BarMap-QA pipeline described in detail in this contribution. It is illustrated here by an elaborate example that emphasizes the careful monitoring of several quality measures. Using an iterative workflow, a reliable and complete kinetics simulation of a synthetic, transcription-regulating riboswitch is obtained using minimal computational resources. All programs and scripts used in this contribution are free software and available for download as a source distribution for Linux® or as a platform-independent Docker® image including support for Apple macOS® and Microsoft Windows®.
Collapse
Affiliation(s)
- Felix Kühnl
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center of Bioinformatics, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
- Santa Fe Institute, Santa Fe, NM, USA
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany.
| |
Collapse
|
2
|
Badelt S, Lorenz R, Hofacker IL. DrTransformer: heuristic cotranscriptional RNA folding using the nearest neighbor energy model. Bioinformatics 2023; 39:6992659. [PMID: 36655786 PMCID: PMC9889959 DOI: 10.1093/bioinformatics/btad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
MOTIVATION Folding during transcription can have an important influence on the structure and function of RNA molecules, as regions closer to the 5' end can fold into metastable structures before potentially stronger interactions with the 3' end become available. Thermodynamic RNA folding models are not suitable to predict structures that result from cotranscriptional folding, as they can only calculate properties of the equilibrium distribution. Other software packages that simulate the kinetic process of RNA folding during transcription exist, but they are mostly applicable for short sequences. RESULTS We present a new algorithm that tracks changes to the RNA secondary structure ensemble during transcription. At every transcription step, new representative local minima are identified, a neighborhood relation is defined and transition rates are estimated for kinetic simulations. After every simulation, a part of the ensemble is removed and the remainder is used to search for new representative structures. The presented algorithm is deterministic (up to numeric instabilities of simulations), fast (in comparison with existing methods), and it is capable of folding RNAs much longer than 200 nucleotides. AVAILABILITY AND IMPLEMENTATION This software is open-source and available at https://github.com/ViennaRNA/drtransformer. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Ronny Lorenz
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Tomassini M. A Local Optima Network View of Real Function Fitness Landscapes. ENTROPY (BASEL, SWITZERLAND) 2022; 24:703. [PMID: 35626586 PMCID: PMC9140595 DOI: 10.3390/e24050703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
The local optima network model has proved useful in the past in connection with combinatorial optimization problems. Here we examine its extension to the real continuous function domain. Through a sampling process, the model builds a weighted directed graph which captures the function's minima basin structure and its interconnection and which can be easily manipulated with the help of complex networks metrics. We show that the model provides a complementary view of function spaces that is easier to analyze and visualize, especially at higher dimensions. In particular, we show that function hardness as represented by algorithm performance is strongly related to several graph properties of the corresponding local optima network, opening the way for a classification of problem difficulty according to the corresponding graph structure and with possible extensions in the design of better metaheuristic approaches.
Collapse
Affiliation(s)
- Marco Tomassini
- Department of Information Systems, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Smerlak M. Quasi-species evolution maximizes genotypic reproductive value (not fitness or flatness). J Theor Biol 2021; 522:110699. [PMID: 33794289 DOI: 10.1016/j.jtbi.2021.110699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Growing efforts to measure fitness landscapes in molecular and microbial systems are motivated by a longstanding goal to predict future evolutionary trajectories. Sometimes under-appreciated, however, is that the fitness landscape and its topography do not by themselves determine the direction of evolution: under sufficiently high mutation rates, populations can climb the closest fitness peak (survival of the fittest), settle in lower regions with higher mutational robustness (survival of the flattest), or even fail to adapt altogether (error catastrophes). I show that another measure of reproductive success, Fisher's reproductive value, resolves the trade-off between fitness and robustness in the quasi-species regime of evolution: to forecast the motion of a population in genotype space, one should look for peaks in the (mutation-rate dependent) landscape of genotypic reproductive values-whether or not these peaks correspond to local fitness maxima or flat fitness plateaus. This new landscape picture turns quasi-species dynamics into an instance of non-equilibrium dynamics, in the physical sense of Markovian processes, potential landscapes, entropy production, etc.
Collapse
Affiliation(s)
- Matteo Smerlak
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| |
Collapse
|
5
|
Entzian G, Hofacker I, Ponty Y, Lorenz R, Tanzer A. RNAxplorer: Harnessing the Power of Guiding Potentials to Sample RNA Landscapes. Bioinformatics 2021; 37:2126-2133. [PMID: 33538792 PMCID: PMC8352504 DOI: 10.1093/bioinformatics/btab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation Predicting the folding dynamics of RNAs is a computationally difficult problem, first and foremost due to the combinatorial explosion of alternative structures in the folding space. Abstractions are therefore needed to simplify downstream analyses, and thus make them computationally tractable. This can be achieved by various structure sampling algorithms. However, current sampling methods are still time consuming and frequently fail to represent key elements of the folding space. Method We introduce RNAxplorer, a novel adaptive sampling method to efficiently explore the structure space of RNAs. RNAxplorer uses dynamic programming to perform an efficient Boltzmann sampling in the presence of guiding potentials, which are accumulated into pseudo-energy terms and reflect similarity to already well-sampled structures. This way, we effectively steer sampling toward underrepresented or unexplored regions of the structure space. Results We developed and applied different measures to benchmark our sampling methods against its competitors. Most of the measures show that RNAxplorer produces more diverse structure samples, yields rare conformations that may be inaccessible to other sampling methods and is better at finding the most relevant kinetic traps in the landscape. Thus, it produces a more representative coarse graining of the landscape, which is well suited to subsequently compute better approximations of RNA folding kinetics. Availabilityand implementation https://github.com/ViennaRNA/RNAxplorer/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gregor Entzian
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Ivo Hofacker
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Faculty of Computer Science, Bioinformatics and Computational Biology, University of Vienna, Vienna, Austria
| | - Yann Ponty
- LIX, CNRS UMR 7161, Ecole Polytechnique, Institut Polytechnique de Paris, France
| | - Ronny Lorenz
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Tanzer
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
|
7
|
Entzian G, Raden M. pourRNA-a time- and memory-efficient approach for the guided exploration of RNA energy landscapes. Bioinformatics 2020; 36:462-469. [PMID: 31350881 DOI: 10.1093/bioinformatics/btz583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
MOTIVATION The folding dynamics of ribonucleic acids (RNAs) are typically studied via coarse-grained models of the underlying energy landscape to face the exponential growths of the RNA secondary structure space. Still, studies of exact folding kinetics based on gradient basin abstractions are currently limited to short sequence lengths due to vast memory requirements. In order to compute exact transition rates between gradient basins, state-of-the-art approaches apply global flooding schemes that require to memorize the whole structure space at once. pourRNA tackles this problem via local flooding techniques where memorization is limited to the structure ensembles of individual gradient basins. RESULTS Compared to the only available tool for exact gradient basin-based macro-state transition rates (namely barriers), pourRNA computes the same exact transition rates up to 10 times faster and requires two orders of magnitude less memory for sequences that are still computationally accessible for exhaustive enumeration. Parallelized computation as well as additional heuristics further speed up computations while still producing high-quality transition model approximations. The introduced heuristics enable a guided trade-off between model quality and required computational resources. We introduce and evaluate a macroscopic direct path heuristics to efficiently compute refolding energy barrier estimations for the co-transcriptionally trapped RNA sv11 of length 115 nt. Finally, we also show how pourRNA can be used to identify folding funnels and their respective energetically lowest minima. AVAILABILITY AND IMPLEMENTATION pourRNA is freely available at https://github.com/ViennaRNA/pourRNA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gregor Entzian
- Department of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Martin Raden
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
8
|
Abstract
There are some NP-hard problems in the prediction of RNA structures. Prediction of RNA folding structure in RNA nucleotide sequence remains an unsolved challenge. We investigate the computing algorithm in RNA folding structural prediction based on extended structure and basin hopping graph, it is a computing mode of basin hopping graph in RNA folding structural prediction including pseudoknots. This study presents the predicting algorithm based on extended structure, it also proposes an improved computing algorithm based on barrier tree and basin hopping graph, which are the attractive approaches in RNA folding structural prediction. Many experiments have been implemented in Rfam14.1 database and PseudoBase database, the experimental results show that our two algorithms are efficient and accurate than the other existing algorithms.
Collapse
Affiliation(s)
- Zhendong Liu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, P. R. China
- Department of Biostatistics, University of California, Los Angeles, Los Angeles 90095, USA
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - Gang Li
- Department of Biostatistics, University of California, Los Angeles, Los Angeles 90095, USA
| | - Jun S. Liu
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Takitou S, Taneda A. Ant colony optimization for predicting RNA folding pathways. Comput Biol Chem 2019; 83:107118. [PMID: 31698162 DOI: 10.1016/j.compbiolchem.2019.107118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/10/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
RNA folding dynamics plays important roles in various functions of RNAs. To date, coarse-grained modeling has been successfully employed to simulate RNA folding dynamics on the energy landscape composed of secondary structures. In such a modeling, the energy barrier height between metastable structures is a key parameter that crucially affects the simulation results. Although a number of approaches ranging from the exact method to heuristic ones are available to predict the barrier heights, developing an efficient heuristic for this purpose is still an algorithmic challenge. We developed a novel RNA folding pathway prediction method, ACOfoldpath, based on Ant Colony Optimization (ACO). ACO is a widely used powerful combinatorial optimization algorithm inspired from the food-seeking behavior of ants. In ACOfoldpath, to accelerate the folding pathway prediction, we reduce the search space by utilizing originally devised structure generation rules. To evaluate the performance of the proposed method, we benchmarked ACOfoldpath on the known nineteen conformational RNA switches. As a result, ACOfoldpath successfully predicted folding pathways better than or comparable to the previous heuristics. The results of RNA folding dynamics simulations and pseudoknotted pathway predictions are also presented.
Collapse
Affiliation(s)
- Seira Takitou
- Course of Electronics and Information Technology, Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
10
|
Kimchi O, Cragnolini T, Brenner MP, Colwell LJ. A Polymer Physics Framework for the Entropy of Arbitrary Pseudoknots. Biophys J 2019; 117:520-532. [PMID: 31353036 PMCID: PMC6697467 DOI: 10.1016/j.bpj.2019.06.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022] Open
Abstract
The accurate prediction of RNA secondary structure from primary sequence has had enormous impact on research from the past 40 years. Although many algorithms are available to make these predictions, the inclusion of non-nested loops, termed pseudoknots, still poses challenges arising from two main factors: 1) no physical model exists to estimate the loop entropies of complex intramolecular pseudoknots, and 2) their NP-complete enumeration has impeded their study. Here, we address both challenges. First, we develop a polymer physics model that can address arbitrarily complex pseudoknots using only two parameters corresponding to concrete physical quantities-over an order of magnitude fewer than the sparsest state-of-the-art phenomenological methods. Second, by coupling this model to exhaustive enumeration of the set of possible structures, we compute the entire free energy landscape of secondary structures resulting from a primary RNA sequence. We demonstrate that for RNA structures of ∼80 nucleotides, with minimal heuristics, the complete enumeration of possible secondary structures can be accomplished quickly despite the NP-complete nature of the problem. We further show that despite our loop entropy model's parametric sparsity, it performs better than or on par with previously published methods in predicting both pseudoknotted and non-pseudoknotted structures on a benchmark data set of RNA structures of ≤80 nucleotides. We suggest ways in which the accuracy of the model can be further improved.
Collapse
Affiliation(s)
- Ofer Kimchi
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts.
| | - Tristan Cragnolini
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michael P Brenner
- School of Engineering and Applied Sciences, Cambridge, Massachusetts; Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts
| | - Lucy J Colwell
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
11
|
Liu Z, Zhu D, Dai Q. Predicting Model and Algorithm in RNA Folding Structure Including Pseudoknots. INT J PATTERN RECOGN 2018. [DOI: 10.1142/s0218001418510059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The prediction of RNA structure with pseudoknots is a nondeterministic polynomial-time hard (NP-hard) problem; according to minimum free energy models and computational methods, we investigate the RNA-pseudoknotted structure. Our paper presents an efficient algorithm for predicting RNA structure with pseudoknots, and the algorithm takes O([Formula: see text]) time and O([Formula: see text]) space, the experimental tests in Rfam10.1 and PseudoBase indicate that the algorithm is more effective and precise. The predicting accuracy, the time complexity and space complexity outperform existing algorithms, such as Maximum Weight Matching (MWM) algorithm, PKNOTS algorithm and Inner Limiting Layer (ILM) algorithm, and the algorithm can predict arbitrary pseudoknots. And there exists a [Formula: see text] ([Formula: see text]) polynomial time approximation scheme in searching maximum number of stackings, and we give the proof of the approximation scheme in RNA-pseudoknotted structure. We have improved several types of pseudoknots considered in RNA folding structure, and analyze their possible transitions between types of pseudoknots.
Collapse
Affiliation(s)
- Zhendong Liu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, P. R. China
| | - Daming Zhu
- School of Computer Science and Technology, Shandong University, Jinan 250101, P. R. China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Fukunaga T, Hamada M. Computational approaches for alternative and transient secondary structures of ribonucleic acids. Brief Funct Genomics 2018; 18:182-191. [PMID: 30689706 DOI: 10.1093/bfgp/ely042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transient and alternative structures of ribonucleic acids (RNAs) play essential roles in various regulatory processes, such as translation regulation in living cells. Because experimental analyses for RNA structures are difficult and time-consuming, computational approaches based on RNA secondary structures are promising. In this article, we review computational methods for detecting and analyzing transient/alternative secondary structures of RNAs, including static approaches based on probabilistic distributions of RNA secondary structures and dynamic approaches such as kinetic folding and folding pathway predictions.
Collapse
|
13
|
Efficient computation of co-transcriptional RNA-ligand interaction dynamics. Methods 2018; 143:70-76. [PMID: 29730250 DOI: 10.1016/j.ymeth.2018.04.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 11/23/2022] Open
Abstract
Riboswitches form an abundant class of cis-regulatory RNA elements that mediate gene expression by binding a small metabolite. For synthetic biology applications, they are becoming cheap and accessible systems for selectively triggering transcription or translation of downstream genes. Many riboswitches are kinetically controlled, hence knowledge of their co-transcriptional mechanisms is essential. We present here an efficient implementation for analyzing co-transcriptional RNA-ligand interaction dynamics. This approach allows for the first time to model concentration-dependent metabolite binding/unbinding kinetics. We exemplify this novel approach by means of the recently studied I-A 2'-deoxyguanosine (2'dG)-sensing riboswitch from Mesoplasma florum.
Collapse
|
14
|
Findeiß S, Etzel M, Will S, Mörl M, Stadler PF. Design of Artificial Riboswitches as Biosensors. SENSORS 2017; 17:s17091990. [PMID: 28867802 PMCID: PMC5621056 DOI: 10.3390/s17091990] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022]
Abstract
RNA aptamers readily recognize small organic molecules, polypeptides, as well as other nucleic acids in a highly specific manner. Many such aptamers have evolved as parts of regulatory systems in nature. Experimental selection techniques such as SELEX have been very successful in finding artificial aptamers for a wide variety of natural and synthetic ligands. Changes in structure and/or stability of aptamers upon ligand binding can propagate through larger RNA constructs and cause specific structural changes at distal positions. In turn, these may affect transcription, translation, splicing, or binding events. The RNA secondary structure model realistically describes both thermodynamic and kinetic aspects of RNA structure formation and refolding at a single, consistent level of modelling. Thus, this framework allows studying the function of natural riboswitches in silico. Moreover, it enables rationally designing artificial switches, combining essentially arbitrary sensors with a broad choice of read-out systems. Eventually, this approach sets the stage for constructing versatile biosensors.
Collapse
Affiliation(s)
- Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, Währingerstraße 29, A-1090 Vienna, Austria.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
| | - Maja Etzel
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Sebastian Will
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
- Faculty of Chemistry, Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, 04103 Leipzig, Germany.
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg , Denmark.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| |
Collapse
|
15
|
Michálik J, Touzet H, Ponty Y. Efficient approximations of RNA kinetics landscape using non-redundant sampling. Bioinformatics 2017; 33:i283-i292. [PMID: 28882001 PMCID: PMC5870705 DOI: 10.1093/bioinformatics/btx269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
MOTIVATION Kinetics is key to understand many phenomena involving RNAs, such as co-transcriptional folding and riboswitches. Exact out-of-equilibrium studies induce extreme computational demands, leading state-of-the-art methods to rely on approximated kinetics landscapes, obtained using sampling strategies that strive to generate the key landmarks of the landscape topology. However, such methods are impeded by a large level of redundancy within sampled sets. Such a redundancy is uninformative, and obfuscates important intermediate states, leading to an incomplete vision of RNA dynamics. RESULTS We introduce RNANR, a new set of algorithms for the exploration of RNA kinetics landscapes at the secondary structure level. RNANR considers locally optimal structures, a reduced set of RNA conformations, in order to focus its sampling on basins in the kinetic landscape. Along with an exhaustive enumeration, RNANR implements a novel non-redundant stochastic sampling, and offers a rich array of structural parameters. Our tests on both real and random RNAs reveal that RNANR allows to generate more unique structures in a given time than its competitors, and allows a deeper exploration of kinetics landscapes. AVAILABILITY AND IMPLEMENTATION RNANR is freely available at https://project.inria.fr/rnalands/rnanr . CONTACT yann.ponty@lix.polytechnique.fr.
Collapse
Affiliation(s)
- Juraj Michálik
- AMIB project, Inria Saclay, Palaiseau, France
- LIX CNRS UMR 7161, Ecole Polytechnique, Palaiseau, France
| | - Hélène Touzet
- CNRS, CRIStAL (UMR 9189, University of Lille), Villeneuve d’Ascq, France
- Bonsai project, Inria Lille-Nord Europe, Villeneuve d’Ascq, France
| | - Yann Ponty
- AMIB project, Inria Saclay, Palaiseau, France
- LIX CNRS UMR 7161, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
16
|
Random versus Deterministic Descent in RNA Energy Landscape Analysis. Adv Bioinformatics 2016; 2016:9654921. [PMID: 27110241 PMCID: PMC4808746 DOI: 10.1155/2016/9654921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/18/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Identifying sets of metastable conformations is a major research topic in RNA energy landscape analysis, and recently several methods have been proposed for finding local minima in landscapes spawned by RNA secondary structures. An important and time-critical component of such methods is steepest, or gradient, descent in attraction basins of local minima. We analyse the speed-up achievable by randomised descent in attraction basins in the context of large sample sets where the size has an order of magnitude in the region of ~106. While the gain for each individual sample might be marginal, the overall run-time improvement can be significant. Moreover, for the two nongradient methods we analysed for partial energy landscapes induced by ten different RNA sequences, we obtained that the number of observed local minima is on average larger by 7.3% and 3.5%, respectively. The run-time improvement is approximately 16.6% and 6.8% on average over the ten partial energy landscapes. For the large sample size we selected for descent procedures, the coverage of local minima is very high up to energy values of the region where the samples were randomly selected from the partial energy landscapes; that is, the difference to the total set of local minima is mainly due to the upper area of the energy landscapes.
Collapse
|
17
|
Lorenz R, Wolfinger MT, Tanzer A, Hofacker IL. Predicting RNA secondary structures from sequence and probing data. Methods 2016; 103:86-98. [PMID: 27064083 DOI: 10.1016/j.ymeth.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023] Open
Abstract
RNA secondary structures have proven essential for understanding the regulatory functions performed by RNA such as microRNAs, bacterial small RNAs, or riboswitches. This success is in part due to the availability of efficient computational methods for predicting RNA secondary structures. Recent advances focus on dealing with the inherent uncertainty of prediction by considering the ensemble of possible structures rather than the single most stable one. Moreover, the advent of high-throughput structural probing has spurred the development of computational methods that incorporate such experimental data as auxiliary information.
Collapse
Affiliation(s)
- Ronny Lorenz
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstrasse 17, 1090 Vienna, Austria.
| | - Michael T Wolfinger
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstrasse 17, 1090 Vienna, Austria; Medical University of Vienna, Center for Anatomy and Cell Biology, Währingerstraße 13, 1090 Vienna, Austria.
| | - Andrea Tanzer
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstrasse 17, 1090 Vienna, Austria.
| | - Ivo L Hofacker
- University of Vienna, Faculty of Chemistry, Department of Theoretical Chemistry, Währingerstrasse 17, 1090 Vienna, Austria; University of Vienna, Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, Währingerstr. 29, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Badelt S, Flamm C, Hofacker IL. Computational Design of a Circular RNA with Prionlike Behavior. ARTIFICIAL LIFE 2016; 22:172-184. [PMID: 26934089 DOI: 10.1162/artl_a_00197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
RNA molecules engineered to fold into predefined conformations have enabled the design of a multitude of functional RNA devices in the field of synthetic biology and nanotechnology. More complex designs require efficient computational methods, which need to consider not only equilibrium thermodynamics but also the kinetics of structure formation. Here we present a novel type of RNA design that mimics the behavior of prions, that is, sequences capable of interaction-triggered autocatalytic replication of conformations. Our design was computed with the ViennaRNA package and is based on circular RNA that embeds domains amenable to intermolecular kissing interactions.
Collapse
|
19
|
Xu X, Yu T, Chen SJ. Understanding the kinetic mechanism of RNA single base pair formation. Proc Natl Acad Sci U S A 2016; 113:116-21. [PMID: 26699466 PMCID: PMC4711849 DOI: 10.1073/pnas.1517511113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RNA functions are intrinsically tied to folding kinetics. The most elementary step in RNA folding is the closing and opening of a base pair. Understanding this elementary rate process is the basis for RNA folding kinetics studies. Previous studies mostly focused on the unfolding of base pairs. Here, based on a hybrid approach, we investigate the folding process at level of single base pairing/stacking. The study, which integrates molecular dynamics simulation, kinetic Monte Carlo simulation, and master equation methods, uncovers two alternative dominant pathways: Starting from the unfolded state, the nucleotide backbone first folds to the native conformation, followed by subsequent adjustment of the base conformation. During the base conformational rearrangement, the backbone either retains the native conformation or switches to nonnative conformations in order to lower the kinetic barrier for base rearrangement. The method enables quantification of kinetic partitioning among the different pathways. Moreover, the simulation reveals several intriguing ion binding/dissociation signatures for the conformational changes. Our approach may be useful for developing a base pair opening/closing rate model.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Physics, University of Missouri, Columbia, MO 65211; Department of Biochemistry, University of Missouri, Columbia, MO 65211; Informatics Institute, University of Missouri, Columbia, MO 65211
| | - Tao Yu
- Department of Physics, University of Missouri, Columbia, MO 65211; Department of Biochemistry, University of Missouri, Columbia, MO 65211; Informatics Institute, University of Missouri, Columbia, MO 65211; Department of Physics, Jianghan University, Wuhan, Hubei 430056, China
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO 65211; Department of Biochemistry, University of Missouri, Columbia, MO 65211; Informatics Institute, University of Missouri, Columbia, MO 65211;
| |
Collapse
|
20
|
Albrecht AA, Day L, Abdelhadi Ep Souki O, Steinhöfel K. A new heuristic method for approximating the number of local minima in partial RNA energy landscapes. Comput Biol Chem 2015; 60:43-52. [PMID: 26657221 DOI: 10.1016/j.compbiolchem.2015.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 10/17/2015] [Accepted: 11/10/2015] [Indexed: 11/28/2022]
Abstract
The analysis of energy landscapes plays an important role in mathematical modelling, simulation and optimisation. Among the main features of interest are the number and distribution of local minima within the energy landscape. Granier and Kallel proposed in 2002 a new sampling procedure for estimating the number of local minima. In the present paper, we focus on improved heuristic implementations of the general framework devised by Granier and Kallel with regard to run-time behaviour and accuracy of predictions. The new heuristic method is demonstrated for the case of partial energy landscapes induced by RNA secondary structures. While the computation of minimum free energy RNA secondary structures has been studied for a long time, the analysis of folding landscapes has gained momentum over the past years in the context of co-transcriptional folding and deeper insights into cell processes. The new approach has been applied to ten RNA instances of length between 99 nt and 504 nt and their respective partial energy landscapes defined by secondary structures within an energy offset ΔE above the minimum free energy conformation. The number of local minima within the partial energy landscapes ranges from 1440 to 3441. Our heuristic method produces for the best approximations on average a deviation below 3.0% from the true number of local minima.
Collapse
Affiliation(s)
| | - Luke Day
- King's College London, Informatics Department, London, UK
| | | | | |
Collapse
|
21
|
Abstract
We describe the first dynamic programming algorithm that computes the expected degree for the network, or graph G = (V, E) of all secondary structures of a given RNA sequence a = a1, …, an. Here, the nodes V correspond to all secondary structures of a, while an edge exists between nodes s, t if the secondary structure t can be obtained from s by adding, removing or shifting a base pair. Since secondary structure kinetics programs implement the Gillespie algorithm, which simulates a random walk on the network of secondary structures, the expected network degree may provide a better understanding of kinetics of RNA folding when allowing defect diffusion, helix zippering, and related conformation transformations. We determine the correlation between expected network degree, contact order, conformational entropy, and expected number of native contacts for a benchmarking dataset of RNAs. Source code is available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors.
Collapse
|
22
|
Badelt S, Hammer S, Flamm C, Hofacker IL. Thermodynamic and kinetic folding of riboswitches. Methods Enzymol 2015; 553:193-213. [PMID: 25726466 DOI: 10.1016/bs.mie.2014.10.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Riboswitches are structured RNA regulatory elements located in the 5'-UTRs of mRNAs. Ligand-binding induces a structural rearrangement in these RNA elements, effecting events in downstream located coding sequences. Since they do not require proteins for their functions, they are ideally suited for computational analysis using the toolbox of RNA structure prediction methods. By their very definition riboswitch function depends on structural change. Methods that consider only the thermodynamic equilibrium of an RNA are therefore of limited use. Instead, one needs to employ computationally more expensive methods that consider the energy landscape and the folding dynamics on that landscape. Moreover, for the important class of kinetic riboswitches, the mechanism of riboswitch function can only be understood in the context of co-transcriptional folding. We present a computational approach to simulate the dynamic behavior of riboswitches during co-transcriptional folding in the presence and absence of a ligand. Our investigations show that the abstraction level of RNA secondary structure in combination with a dynamic folding landscape approach is expressive enough to understand how riboswitches perform their function. We apply our approach to a experimentally validated theophylline-binding riboswitch.
Collapse
Affiliation(s)
- Stefan Badelt
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Stefan Hammer
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria; Research Group Bioinformatics and Computational Biology, University of Vienna, Vienna, Austria
| | - Christoph Flamm
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria; Research Group Bioinformatics and Computational Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Abstract
In this chapter, we review both computational and experimental aspects of de novo RNA sequence design. We give an overview of currently available design software and their limitations, and discuss the necessary setup to experimentally validate proper function in vitro and in vivo. We focus on transcription-regulating riboswitches, a task that has just recently lead to first successful designs of such RNA elements.
Collapse
Affiliation(s)
- Sven Findeiß
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria; Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Manja Wachsmuth
- Institute for Biochemistry, University of Leipzig, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Leipzig, Germany.
| | - Peter F Stadler
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria; Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, Leipzig, Germany; Center for RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark; Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany; Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
24
|
Mann M, Kucharík M, Flamm C, Wolfinger MT. Memory-efficient RNA energy landscape exploration. Bioinformatics 2014; 30:2584-91. [PMID: 24833804 PMCID: PMC4155248 DOI: 10.1093/bioinformatics/btu337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/25/2014] [Accepted: 05/08/2014] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION Energy landscapes provide a valuable means for studying the folding dynamics of short RNA molecules in detail by modeling all possible structures and their transitions. Higher abstraction levels based on a macro-state decomposition of the landscape enable the study of larger systems; however, they are still restricted by huge memory requirements of exact approaches. RESULTS We present a highly parallelizable local enumeration scheme that enables the computation of exact macro-state transition models with highly reduced memory requirements. The approach is evaluated on RNA secondary structure landscapes using a gradient basin definition for macro-states. Furthermore, we demonstrate the need for exact transition models by comparing two barrier-based approaches, and perform a detailed investigation of gradient basins in RNA energy landscapes. AVAILABILITY AND IMPLEMENTATION Source code is part of the C++ Energy Landscape Library available at http://www.bioinf.uni-freiburg.de/Software/.
Collapse
Affiliation(s)
- Martin Mann
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany, Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, and Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Marcel Kucharík
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany, Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, and Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Christoph Flamm
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany, Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, and Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Michael T Wolfinger
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany, Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, and Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany, Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, and Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany, Institute for Theoretical Chemistry, University of Vienna, 1090 Vienna, Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, and Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|