1
|
Pal A, Mulumudy R, Mitra P. Modularity-based parallel protein design algorithm with an implementation using shared memory programming. Proteins 2021; 90:658-669. [PMID: 34651333 DOI: 10.1002/prot.26263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/08/2023]
Abstract
Given a target protein structure, the prime objective of protein design is to find amino acid sequences that will fold/acquire to the given three-dimensional structure. The protein design problem belongs to the non-deterministic polynomial-time-hard class as sequence search space increases exponentially with protein length. To ensure better search space exploration and faster convergence, we propose a protein modularity-based parallel protein design algorithm. The modular architecture of the protein structure is exploited by considering an intermediate structural organization between secondary structure and domain defined as protein unit (PU). Here, we have incorporated a divide-and-conquer approach where a protein is split into PUs and each PU region is explored in a parallel fashion. It has been further analyzed that our shared memory implementation of modularity-based parallel sequence search leads to better search space exploration compared to the case of traditional full protein design. Sequence-based analysis on design sequences depicts an average of 39.7% sequence similarity on the benchmark data set. Structure-based comparison of the modeled structures of the design protein with the target structure exhibited an average root-mean-square deviation of 1.17 Å and an average template modeling score of 0.89. The selected modeled structures of the design protein sequences are validated using 100 ns molecular dynamics simulations where 80% of the proteins have shown better or similar stability to the respective target proteins. Our study informs that our modularity-based protein design algorithm can be extended to protein interaction design as well.
Collapse
Affiliation(s)
- Abantika Pal
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Rohith Mulumudy
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pralay Mitra
- Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
2
|
Maguire JB, Grattarola D, Mulligan VK, Klyshko E, Melo H. XENet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers. PLoS Comput Biol 2021; 17:e1009037. [PMID: 34570773 PMCID: PMC8496835 DOI: 10.1371/journal.pcbi.1009037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/07/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
Graph representations are traditionally used to represent protein structures in sequence design protocols in which the protein backbone conformation is known. This infrequently extends to machine learning projects: existing graph convolution algorithms have shortcomings when representing protein environments. One reason for this is the lack of emphasis on edge attributes during massage-passing operations. Another reason is the traditionally shallow nature of graph neural network architectures. Here we introduce an improved message-passing operation that is better equipped to model local kinematics problems such as protein design. Our approach, XENet, pays special attention to both incoming and outgoing edge attributes. We compare XENet against existing graph convolutions in an attempt to decrease rotamer sample counts in Rosetta's rotamer substitution protocol, used for protein side-chain optimization and sequence design. This use case is motivating because it both reduces the size of the search space for classical side-chain optimization algorithms, and allows larger protein design problems to be solved with quantum algorithms on near-term quantum computers with limited qubit counts. XENet outperformed competing models while also displaying a greater tolerance for deeper architectures. We found that XENet was able to decrease rotamer counts by 40% without loss in quality. This decreased the memory consumption for classical pre-computation of rotamer energies in our use case by more than a factor of 3, the qubit consumption for an existing sequence design quantum algorithm by 40%, and the size of the solution space by a factor of 165. Additionally, XENet displayed an ability to handle deeper architectures than competing convolutions.
Collapse
Affiliation(s)
- Jack B. Maguire
- Menten AI, Inc., Palo Alto, California, United States of America
| | - Daniele Grattarola
- Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
| | - Vikram Khipple Mulligan
- Center for Computational Biology, Flatiron Institute, New York, New York, United States of America
| | - Eugene Klyshko
- Menten AI, Inc., Palo Alto, California, United States of America
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Hans Melo
- Menten AI, Inc., Palo Alto, California, United States of America
| |
Collapse
|
3
|
HALLEN MARKA, DONALD BRUCER. Protein Design by Provable Algorithms. COMMUNICATIONS OF THE ACM 2019; 62:76-84. [PMID: 31607753 PMCID: PMC6788629 DOI: 10.1145/3338124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein design algorithms can leverage provable guarantees of accuracy to provide new insights and unique optimized molecules.
Collapse
Affiliation(s)
- MARK A. HALLEN
- Research assistant professor at the Toyota Technological Institute at Chicago, IL, USA
| | - BRUCE R. DONALD
- James B. Duke Professor of Computer Science at Duke University, as well as a
professor of chemistry and biochemistry in the Duke University Medical
Center, Durham, NC, USA
| |
Collapse
|
4
|
Hallen MA, Martin JW, Ojewole A, Jou JD, Lowegard AU, Frenkel MS, Gainza P, Nisonoff HM, Mukund A, Wang S, Holt GT, Zhou D, Dowd E, Donald BR. OSPREY 3.0: Open-source protein redesign for you, with powerful new features. J Comput Chem 2018; 39:2494-2507. [PMID: 30368845 PMCID: PMC6391056 DOI: 10.1002/jcc.25522] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Abstract
We present osprey 3.0, a new and greatly improved release of the osprey protein design software. Osprey 3.0 features a convenient new Python interface, which greatly improves its ease of use. It is over two orders of magnitude faster than previous versions of osprey when running the same algorithms on the same hardware. Moreover, osprey 3.0 includes several new algorithms, which introduce substantial speedups as well as improved biophysical modeling. It also includes GPU support, which provides an additional speedup of over an order of magnitude. Like previous versions of osprey, osprey 3.0 offers a unique package of advantages over other design software, including provable design algorithms that account for continuous flexibility during design and model conformational entropy. Finally, we show here empirically that osprey 3.0 accurately predicts the effect of mutations on protein-protein binding. Osprey 3.0 is available at http://www.cs.duke.edu/donaldlab/osprey.php as free and open-source software. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mark A. Hallen
- Department of Computer Science, Duke University, Durham, NC
27708
- Toyota Technological Institute at Chicago, Chicago, IL
60637
| | | | - Adegoke Ojewole
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - Jonathan D. Jou
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Anna U. Lowegard
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - Marcel S. Frenkel
- Department of Biochemistry, Duke University Medical Center,
Durham, NC 27710
| | - Pablo Gainza
- Department of Computer Science, Duke University, Durham, NC
27708
| | | | - Aditya Mukund
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Siyu Wang
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - Graham T. Holt
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - David Zhou
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Elizabeth Dowd
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Bruce R. Donald
- Department of Computer Science, Duke University, Durham, NC
27708
- Department of Chemistry, Duke University, Durham, NC
27708
- Department of Biochemistry, Duke University Medical Center,
Durham, NC 27710
| |
Collapse
|
5
|
Dauzhenka T, Kundrotas PJ, Vakser IA. Computational Feasibility of an Exhaustive Search of Side-Chain Conformations in Protein-Protein Docking. J Comput Chem 2018; 39:2012-2021. [PMID: 30226647 DOI: 10.1002/jcc.25381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/24/2018] [Accepted: 05/26/2018] [Indexed: 11/07/2022]
Abstract
Protein-protein docking procedures typically perform the global scan of the proteins relative positions, followed by the local refinement of the putative matches. Because of the size of the search space, the global scan is usually implemented as rigid-body search, using computationally inexpensive intermolecular energy approximations. An adequate refinement has to take into account structural flexibility. Since the refinement performs conformational search of the interacting proteins, it is extremely computationally challenging, given the enormous amount of the internal degrees of freedom. Different approaches limit the search space by restricting the search to the side chains, rotameric states, coarse-grained structure representation, principal normal modes, and so on. Still, even with the approximations, the refinement presents an extreme computational challenge due to the very large number of the remaining degrees of freedom. Given the complexity of the search space, the advantage of the exhaustive search is obvious. The obstacle to such search is computational feasibility. However, the growing computational power of modern computers, especially due to the increasing utilization of Graphics Processing Unit (GPU) with large amount of specialized computing cores, extends the ranges of applicability of the brute-force search methods. This proof-of-concept study demonstrates computational feasibility of an exhaustive search of side-chain conformations in protein pocking. The procedure, implemented on the GPU architecture, was used to generate the optimal conformations in a large representative set of protein-protein complexes. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Taras Dauzhenka
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66047
| | - Petras J Kundrotas
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66047
| | - Ilya A Vakser
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas, 66047.,Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, 66047
| |
Collapse
|
6
|
Abstract
Computational structure-based protein design (CSPD) is an important problem in computational biology, which aims to design or improve a prescribed protein function based on a protein structure template. It provides a practical tool for real-world protein engineering applications. A popular CSPD method that guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination (DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in exponential time in the worst case, which may become the computation bottleneck of large-scale computational protein design process. To address this issue, we extend and add a new module to the OSPREY program that was previously developed in the Donald lab (Gainza et al., Methods Enzymol 523:87, 2013) to implement a GPU-based massively parallel A* algorithm for improving protein design pipeline. By exploiting the modern GPU computational framework and optimizing the computation of the heuristic function for A* search, our new program, called gOSPREY, can provide up to four orders of magnitude speedups in large protein design cases with a small memory overhead comparing to the traditional A* search algorithm implementation, while still guaranteeing the optimality. In addition, gOSPREY can be configured to run in a bounded-memory mode to tackle the problems in which the conformation space is too large and the global optimal solution cannot be computed previously. Furthermore, the GPU-based A* algorithm implemented in the gOSPREY program can be combined with the state-of-the-art rotamer pruning algorithms such as iMinDEE (Gainza et al., PLoS Comput Biol 8:e1002335, 2012) and DEEPer (Hallen et al., Proteins 81:18-39, 2013) to also consider continuous backbone and side-chain flexibility.
Collapse
Affiliation(s)
- Yichao Zhou
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, P. R. China
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
7
|
Pan Y, Dong Y, Zhou J, Hallen M, Donald BR, Zeng J, Xu W. cOSPREY: A Cloud-Based Distributed Algorithm for Large-Scale Computational Protein Design. J Comput Biol 2016; 23:737-49. [PMID: 27154509 PMCID: PMC5586165 DOI: 10.1089/cmb.2015.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Finding the global minimum energy conformation (GMEC) of a huge combinatorial search space is the key challenge in computational protein design (CPD) problems. Traditional algorithms lack a scalable and efficient distributed design scheme, preventing researchers from taking full advantage of current cloud infrastructures. We design cloud OSPREY (cOSPREY), an extension to a widely used protein design software OSPREY, to allow the original design framework to scale to the commercial cloud infrastructures. We propose several novel designs to integrate both algorithm and system optimizations, such as GMEC-specific pruning, state search partitioning, asynchronous algorithm state sharing, and fault tolerance. We evaluate cOSPREY on three different cloud platforms using different technologies and show that it can solve a number of large-scale protein design problems that have not been possible with previous approaches.
Collapse
Affiliation(s)
- Yuchao Pan
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Yuxi Dong
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Jingtian Zhou
- Department of Pharmacology and Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Mark Hallen
- Department of Computer Science, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| | - Bruce R. Donald
- Department of Computer Science, Duke University, Durham, North Carolina
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Wei Xu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Liu H, Chen Q. Computational protein design for given backbone: recent progresses in general method-related aspects. Curr Opin Struct Biol 2016; 39:89-95. [PMID: 27348345 DOI: 10.1016/j.sbi.2016.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/18/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
To achieve high success rate in protein design requires a reliable sequence design method to find amino acid sequences that stably fold into a desired backbone structure. This problem is addressed by computational protein design through the approach of energy minimization. Here we review recent method progresses related to improving the accuracy of this approach. First, the quality of the energy model is a key factor. Second, with structure sensitive energy functions, whether and how backbone flexibility is considered can have large effects on design accuracy, although usually only small adjustments of the backbone structure itself are involved. Third, the effective accuracy of design results can be boosted by post-processing a small number of designed sequences with complementary models that may not be efficient enough for full sequence optimization. Finally, computational method development will benefit greatly from increasingly efficient experimental approaches that can be applied to obtain extensive feedbacks.
Collapse
Affiliation(s)
- Haiyan Liu
- School of Life Sciences, University of Science and Technology of China, China; Hefei National Laboratory for Physical Sciences at the Microscales, China; Collaborative Innovation Center of Chemistry for Life Sciences, Hefei, Anhui 230027, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Quan Chen
- School of Life Sciences, University of Science and Technology of China, China
| |
Collapse
|
9
|
Zhou Y, Wu Y, Zeng J. Computational Protein Design Using AND/OR Branch-and-Bound Search. J Comput Biol 2016; 23:439-51. [DOI: 10.1089/cmb.2015.0212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Yichao Zhou
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Yuexin Wu
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| |
Collapse
|