1
|
Coluzzi C, Piscon B, Dérozier S, Chiapello H, Gal-Mor O. Comparative genomics of Salmonella enterica serovars Paratyphi A, Typhi and Typhimurium reveals distinct profiles of their pangenome, mobile genetic elements, antimicrobial resistance and defense systems repertoire. Virulence 2025; 16:2504658. [PMID: 40394957 PMCID: PMC12101602 DOI: 10.1080/21505594.2025.2504658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/05/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
Salmonella enterica (S. enterica) is a highly ubiquitous and diverse animal and human pathogen. Distinct S. enterica serovars may present varying host-specificity and cause different diseases. While the human-restricted serovars S. Typhi (STY) and S. Paratyphi A (SPA) cause in humans a systemic life-threatening enteric fever, the host-generalist serovar, S. Typhimurium (STM) causes in immunocompetent individuals a self-limited gastroenteritis. Here, we have performed whole-genome sequencing and hybrid assembly of new SPA and STY typhoidal strains and took a comparative genomics approach to examine their phylogeny, pangenome structure and accessory genome content in comparison to the reference non-typhoidal serovar, STM. Our results identified previously uncharacterized lineages of SPA and refined the presence and distribution of core pseudogenes in typhoidal serovars. Pangenome analysis showed that while these serovars have a relatively similar core-genome size, the accessory genome of STM is more than four times larger than those of typhoidal Salmonellae and that STY and SPA display a more closed pangenome than STM. Unexpectedly, we demonstrate that STY and SPA present distinct differences in their pangenome composition, with a noticeable lower number of prophages, conjugative elements and antimicrobial genes per genome in SPA vs. STY. These results suggest that although SPA and STY are closely related at the DNA level, share a similar lifestyle and cause a symptomatic-indistinguishable disease, their genomic evolution and accessory genomes are markedly different. Moreover, these results may provide genomic explanation to phenotypic and epidemiological differences in antimicrobial resistance profiles associated with these serovars globally.
Collapse
Affiliation(s)
- Charles Coluzzi
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Microbial Evolutionary Genomics, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Bar Piscon
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sandra Dérozier
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
2
|
Lugli GA, Fontana F, Tarracchini C, Milani C, Mancabelli L, Turroni F, Ventura M. MEGAnnotator2: a pipeline for the assembly and annotation of microbial genomes. MICROBIOME RESEARCH REPORTS 2023; 2:15. [PMID: 38058405 PMCID: PMC10696586 DOI: 10.20517/mrr.2022.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 12/08/2023]
Abstract
The reconstruction of microbial genome sequences by bioinformatic pipelines and the consequent functional annotation of their genes' repertoire are fundamental activities aiming at unveiling their biological mechanisms, such as metabolism, virulence factors, and antimicrobial resistances. Here, we describe the development of the MEGAnnotator2 pipeline able to manage all next-generation sequencing methodologies producing short- and long-read DNA sequences. Starting from raw sequencing data, the updated pipeline can manage multiple analyses leading to the assembly of high-quality genome sequences and the functional classification of their genetic repertoire, providing the user with a useful report constituting features and statistics related to the microbial genome. The updated pipeline is fully automated from the installation to the delivery of the output, thus requiring minimal bioinformatics knowledge to be executed.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43125, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| |
Collapse
|
3
|
Cohen H, Hoede C, Scharte F, Coluzzi C, Cohen E, Shomer I, Mallet L, Holbert S, Serre RF, Schiex T, Virlogeux-Payant I, Grassl GA, Hensel M, Chiapello H, Gal-Mor O. Intracellular Salmonella Paratyphi A is motile and differs in the expression of flagella-chemotaxis, SPI-1 and carbon utilization pathways in comparison to intracellular S. Typhimurium. PLoS Pathog 2022; 18:e1010425. [PMID: 35381053 PMCID: PMC9012535 DOI: 10.1371/journal.ppat.1010425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/15/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Although Salmonella Typhimurium (STM) and Salmonella Paratyphi A (SPA) belong to the same phylogenetic species, share large portions of their genome and express many common virulence factors, they differ vastly in their host specificity, the immune response they elicit, and the clinical manifestations they cause. In this work, we compared their intracellular transcriptomic architecture and cellular phenotypes during human epithelial cell infection. While transcription induction of many metal transport systems, purines, biotin, PhoPQ and SPI-2 regulons was similar in both intracellular SPA and STM, we identified 234 differentially expressed genes that showed distinct expression patterns in intracellular SPA vs. STM. Surprisingly, clear expression differences were found in SPI-1, motility and chemotaxis, and carbon (mainly citrate, galactonate and ethanolamine) utilization pathways, indicating that these pathways are regulated differently during their intracellular phase. Concurring, on the cellular level, we show that while the majority of STM are non-motile and reside within Salmonella-Containing Vacuoles (SCV), a significant proportion of intracellular SPA cells are motile and compartmentalized in the cytosol. Moreover, we found that the elevated expression of SPI-1 and motility genes by intracellular SPA results in increased invasiveness of SPA, following exit from host cells. These findings demonstrate unexpected flagellum-dependent intracellular motility of a typhoidal Salmonella serovar and intriguing differences in intracellular localization between typhoidal and non-typhoidal salmonellae. We propose that these differences facilitate new cycles of host cell infection by SPA and may contribute to the ability of SPA to disseminate beyond the intestinal lamina propria of the human host during enteric fever. Salmonella enterica is a ubiquitous, facultative intracellular animal and human pathogen. Although non-typhoidal Salmonella (NTS) and typhoidal Salmonella serovars belong to the same phylogenetic species and share many virulence factors, the disease they cause in humans is very different. While the underlying mechanisms for these differences are not fully understood, one possible reason expected to contribute to their different pathogenicity is a distinct expression pattern of genes involved in host-pathogen interactions. Here, we compared the global gene expression and intracellular phenotypes, during human epithelial cell infection of S. Paratyphi A (SPA) and S. Typhimurium (STM), as prototypical serovars of typhoidal and NTS, respectively. Interestingly, we identified different expression patterns in key virulence and metabolic pathways, cytosolic motility and increased reinvasion of SPA, following exit from infected cells. We hypothesize that these differences contribute to the invasive and systemic disease developed following SPA infection in humans.
Collapse
Affiliation(s)
- Helit Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Claire Hoede
- Université Fédérale de Toulouse, INRAE, BioinfOmics, UR MIAT, GenoToul Bioinformatics facility, 31326, Castanet-Tolosan, France
| | - Felix Scharte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Charles Coluzzi
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | - Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Inna Shomer
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ludovic Mallet
- Université Fédérale de Toulouse, INRAE, BioinfOmics, UR MIAT, GenoToul Bioinformatics facility, 31326, Castanet-Tolosan, France
| | | | | | - Thomas Schiex
- Université Fédérale de Toulouse, ANITI, INRAE, Toulouse, France
| | | | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs–Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
- * E-mail: (MH); (HC); (OG-M)
| | - Hélène Chiapello
- Université Fédérale de Toulouse, INRAE, BioinfOmics, UR MIAT, GenoToul Bioinformatics facility, 31326, Castanet-Tolosan, France
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
- * E-mail: (MH); (HC); (OG-M)
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail: (MH); (HC); (OG-M)
| |
Collapse
|
4
|
Pichot C, Djari A, Tran J, Verdenaud M, Marande W, Huneau C, Gautier V, Latrasse D, Arribat S, Sommard V, Troadec C, Poncet C, Bendahmane M, Szecsi J, Dogimont C, Salse J, Benhamed M, Zouine M, Boualem A, Bendahmane A. Cantaloupe melon genome reveals 3D chromatin features and structural relationship with the ancestral cucurbitaceae karyotype. iScience 2022; 25:103696. [PMID: 35059606 PMCID: PMC8760558 DOI: 10.1016/j.isci.2021.103696] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Cucumis melo displays a large diversity of horticultural groups with cantaloupe melon the most cultivated type. Using a combination of single-molecule sequencing, 10X Genomics link-reads, high-density optical and genetic maps, and chromosome conformation capture (Hi-C), we assembled a chromosome scale C. melo var. cantalupensis Charentais mono genome. Integration of RNA-seq, MeDip-seq, ChIP-seq, and Hi-C data revealed a widespread compartmentalization of the melon genome, segregating constitutive heterochromatin and euchromatin. Genome-wide comparative and evolutionary analysis between melon botanical groups identified Charentais mono genome increasingly more divergent from Harukei-3 (reticulatus), Payzawat (inodorus), and HS (ssp. agrestis) genomes. To assess the paleohistory of the Cucurbitaceae, we reconstructed the ancestral Cucurbitaceae karyotype and compared it to sequenced cucurbit genomes. In contrast to other species that experienced massive chromosome shuffling, melon has retained the ancestral genome structure. We provide comprehensive genomic resources and new insights in the diversity of melon horticultural groups and evolution of cucurbits. We provide a chromosome scale C. melo var. cantalupensis Charentais mono genome Epigenomic analysis revealed a widespread compartmentalization of the melon genome We reconstructed the ancestral Cucurbitaceae karyotype Melon has retained the ancestral Cucurbitaceae genome structure
Collapse
Affiliation(s)
- Clement Pichot
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Anis Djari
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Joseph Tran
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Marion Verdenaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Cecile Huneau
- INRAE-UCA UMR 1095 GDEC, 5 chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Veronique Gautier
- INRAE-UCA UMR 1095 GDEC, 5 chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Sandrine Arribat
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Vivien Sommard
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Charles Poncet
- INRAE-UCA UMR 1095 GDEC, 5 chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, INRAE, CNRS, Université Lyon 1-ENSL, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Judit Szecsi
- Laboratoire Reproduction et Développement des Plantes, INRAE, CNRS, Université Lyon 1-ENSL, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Catherine Dogimont
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Jerome Salse
- INRAE-UCA UMR 1095 GDEC, 5 chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Mohamed Zouine
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
- Corresponding author
| |
Collapse
|
5
|
Hufnagel B, Soriano A, Taylor J, Divol F, Kroc M, Sanders H, Yeheyis L, Nelson M, Péret B. Pangenome of white lupin provides insights into the diversity of the species. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2532-2543. [PMID: 34346542 PMCID: PMC8633493 DOI: 10.1111/pbi.13678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 05/21/2023]
Abstract
White lupin is an old crop with renewed interest due to its seed high protein content and high nutritional value. Despite a long domestication history in the Mediterranean basin, modern breeding efforts have been fairly scarce. Recent sequencing of its genome has provided tools for further description of genetic resources but detailed characterization of genomic diversity is still missing. Here, we report the genome sequencing of 39 accessions that were used to establish a white lupin pangenome. We defined 32 068 core genes that are present in all individuals and 14 822 that are absent in some and may represent a gene pool for breeding for improved productivity, grain quality, and stress adaptation. We used this new pangenome resource to identify candidate genes for alkaloid synthesis, a key grain quality trait. The white lupin pangenome provides a novel genetic resource to better understand how domestication has shaped the genomic variability within this crop. Thus, this pangenome resource is an important step towards the effective and efficient genetic improvement of white lupin to help meet the rapidly growing demand for plant protein sources for human and animal consumption.
Collapse
Affiliation(s)
- Bárbara Hufnagel
- BPMPUniv MontpellierCNRSINRAEInstitut AgroMontpellierFrance
- Present address:
CIRADUMR AGAP InstitutSEAPAG TeamPetit‐BourgGuadeloupeF‐97170French West Indies
| | | | | | - Fanchon Divol
- BPMPUniv MontpellierCNRSINRAEInstitut AgroMontpellierFrance
| | - Magdalena Kroc
- Institute of Plant Genetics Polish Academy of SciencesPoznanPoland
| | | | | | | | - Benjamin Péret
- BPMPUniv MontpellierCNRSINRAEInstitut AgroMontpellierFrance
| |
Collapse
|
6
|
Kimbrel JA, Jeffrey BM, Ward CS. Prokaryotic Genome Annotation. Methods Mol Biol 2021; 2349:193-214. [PMID: 34718997 DOI: 10.1007/978-1-0716-1585-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In the last decade, the high-throughput and relatively low cost of short-read sequencing technologies have revolutionized prokaryotic genomics. This has led to an exponential increase in the number of bacterial and archaeal genome sequences available, as well as corresponding increase of genome assembly and annotation tools developed. Together, these hardware and software technologies have given scientists unprecedented options to study their chosen microbial systems without the need for large teams of bioinformaticists or supercomputing facilities. While these analysis tools largely fall into only a few categories, each may have different requirements, caveats and file formats, and some may be rarely updated or even abandoned. And so, despite the apparent ease in sequencing and analyzing a prokaryotic genome, it is no wonder that the budding genomicist may quickly find oneself overwhelmed. Here, we aim to provide the reader with an overview of genome annotation and its most important considerations, as well as an easy-to-follow protocol to get started with annotating a prokaryotic genome.
Collapse
Affiliation(s)
- Jeffrey A Kimbrel
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Brendan M Jeffrey
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MA, USA
| | - Christopher S Ward
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
7
|
Boivin S, Mahé F, Debellé F, Pervent M, Tancelin M, Tauzin M, Wielbo J, Mazurier S, Young P, Lepetit M. Genetic Variation in Host-Specific Competitiveness of the Symbiont Rhizobium leguminosarum Symbiovar viciae. FRONTIERS IN PLANT SCIENCE 2021; 12:719987. [PMID: 34567032 PMCID: PMC8457355 DOI: 10.3389/fpls.2021.719987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/29/2021] [Indexed: 05/25/2023]
Abstract
Legumes of the Fabeae tribe form nitrogen-fixing root nodules resulting from symbiotic interaction with the soil bacteria Rhizobium leguminosarum symbiovar viciae (Rlv). These bacteria are all potential symbionts of the Fabeae hosts but display variable partner choice when co-inoculated in mixture. Because partner choice and symbiotic nitrogen fixation mostly behave as genetically independent traits, the efficiency of symbiosis is often suboptimal when Fabeae legumes are exposed to natural Rlv populations present in soil. A core collection of 32 Rlv bacteria was constituted based on the genomic comparison of a collection of 121 genome sequences, representative of known worldwide diversity of Rlv. A variable part of the nodD gene sequence was used as a DNA barcode to discriminate and quantify each of the 32 bacteria in mixture. This core collection was co-inoculated on a panel of nine genetically diverse Pisum sativum, Vicia faba, and Lens culinaris genotypes. We estimated the relative Early Partner Choice (EPC) of the bacteria with the Fabeae hosts by DNA metabarcoding on the nodulated root systems. Comparative genomic analyses within the bacterial core collection identified molecular markers associated with host-dependent symbiotic partner choice. The results revealed emergent properties of rhizobial populations. They pave the way to identify genes related to important symbiotic traits operating at this level.
Collapse
Affiliation(s)
- Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Frederic Mahé
- Biologie et Génétique des Interactions Plante-Parasite, CIRAD, INRAE, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Frédéric Debellé
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, University of Toulouse, Castanet-Tolosan, France
| | - Marjorie Pervent
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Mathilde Tancelin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Marc Tauzin
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Jerzy Wielbo
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sylvie Mazurier
- Agroecology, AgroSup Dijon, INRAE, University Burgundy Franche-Comté, Dijon, France
| | - Peter Young
- Department of Biology, University of York, York, United Kingdom
| | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
- Institut Sophia Agrobiotech, INRAE, CNRS, Côte d’Azur University, Sophia-Antipolis, France
| |
Collapse
|
8
|
Bradyrhizobium diazoefficiens USDA110 Nodulation of Aeschynomene afraspera Is Associated with Atypical Terminal Bacteroid Differentiation and Suboptimal Symbiotic Efficiency. mSystems 2021; 6:6/3/e01237-20. [PMID: 33975972 PMCID: PMC8125078 DOI: 10.1128/msystems.01237-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Legume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant. Bradyrhizobium diazoefficiens USDA110 was isolated as a soybean symbiont, but it can also establish a functional symbiotic interaction with Aeschynomene afraspera. In contrast to soybean, A. afraspera triggers terminal bacteroid differentiation, a process involving bacterial cell elongation, polyploidy, and increased membrane permeability, leading to a loss of bacterial viability while plants increase their symbiotic benefit. A combination of plant metabolomics, bacterial proteomics, and transcriptomics along with cytological analyses were used to study the physiology of USDA110 bacteroids in these two host plants. We show that USDA110 establishes a poorly efficient symbiosis with A. afraspera despite the full activation of the bacterial symbiotic program. We found molecular signatures of high levels of stress in A. afraspera bacteroids, whereas those of terminal bacteroid differentiation were only partially activated. Finally, we show that in A. afraspera, USDA110 bacteroids undergo atypical terminal differentiation hallmarked by the disconnection of the canonical features of this process. This study pinpoints how a rhizobium strain can adapt its physiology to a new host and cope with terminal differentiation when it did not coevolve with such a host. IMPORTANCE Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Some, but not all, legume plants optimize their return on investment in the symbiosis by imposing on their microsymbionts a terminal differentiation program that increases their symbiotic efficiency but imposes a high level of stress and drastically reduces their viability. We combined multi-omics with physiological analyses to show that the symbiotic couple formed by Bradyrhizobium diazoefficiens USDA110 and Aeschynomene afraspera, in which the host and symbiont did not evolve together, is functional but displays a low symbiotic efficiency associated with a disconnection of terminal bacteroid differentiation features.
Collapse
|
9
|
Boivin S, Ait Lahmidi N, Sherlock D, Bonhomme M, Dijon D, Heulin‐Gotty K, Le‐Queré A, Pervent M, Tauzin M, Carlsson G, Jensen E, Journet E, Lopez‐Bellido R, Seidenglanz M, Marinkovic J, Colella S, Brunel B, Young P, Lepetit M. Host-specific competitiveness to form nodules in Rhizobium leguminosarum symbiovar viciae. THE NEW PHYTOLOGIST 2020; 226:555-568. [PMID: 31873949 PMCID: PMC7687279 DOI: 10.1111/nph.16392] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 05/07/2023]
Abstract
Fabeae legumes such as pea and faba bean form symbiotic nodules with a large diversity of soil Rhizobium leguminosarum symbiovar viciae (Rlv) bacteria. However, bacteria competitive to form root nodules (CFN) are generally not the most efficient to fix dinitrogen, resulting in a decrease in legume crop yields. Here, we investigate differential selection by host plants on the diversity of Rlv. A large collection of Rlv was collected by nodule trapping with pea and faba bean from soils at five European sites. Representative genomes were sequenced. In parallel, diversity and abundance of Rlv were estimated directly in these soils using metabarcoding. The CFN of isolates was measured with both legume hosts. Pea/faba bean CFN were associated to Rlv genomic regions. Variations of bacterial pea and/or faba bean CFN explained the differential abundance of Rlv genotypes in pea and faba bean nodules. No evidence was found for genetic association between CFN and variations in the core genome, but variations in specific regions of the nod locus, as well as in other plasmid loci, were associated with differences in CFN. These findings shed light on the genetic control of CFN in Rlv and emphasise the importance of host plants in controlling Rhizobium diversity.
Collapse
Affiliation(s)
- Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Nassima Ait Lahmidi
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | | | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, CNRS, UPSUniversité de Toulouse31326Castanet‐TolosanFrance
| | - Doriane Dijon
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Karine Heulin‐Gotty
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Antoine Le‐Queré
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Marjorie Pervent
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Marc Tauzin
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Georg Carlsson
- Department of Biosystems and TechnologySwedish University of Agricultural SciencesSE‐230 53AlnarpSweden
| | - Erik Jensen
- Department of Biosystems and TechnologySwedish University of Agricultural SciencesSE‐230 53AlnarpSweden
| | - Etienne‐Pascal Journet
- AGroécologie, Innovation et teRritoires (AGIR) INRAEENSAT31326Castanet‐TolosanFrance
- Laboratoire des Interactions Plantes MicrorganismesUniversité de Toulouse, INRAE, CNRS31326Castanet‐TolosanFrance
| | - Raphael Lopez‐Bellido
- Departamento de Ciencias y Recursos Agrícolas y ForestalesUniversity of Córdoba14071CórdobaSpain
| | | | | | - Stefano Colella
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Brigitte Brunel
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| | - Peter Young
- Department of BiologyUniversity of YorkYorkYO10 5DDUK
| | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM) INRAE, IRD, CIRADUniversity of MontpellierMontpellier SupAgro34398Montpellier cedex 5France
| |
Collapse
|
10
|
Lacault C, Briand M, Jacques MA, Darrasse A. Zucchini Vein Clearing Disease Is Caused by Several Lineages Within Pseudomonas syringae Species Complex. PHYTOPATHOLOGY 2020; 110:744-757. [PMID: 31909688 DOI: 10.1094/phyto-07-19-0266-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zucchini (Cucurbita pepo) is worldwide affected by Pseudomonas syringae, inducing vein clearing, stunting, and necroses during plantlet development. A collection of 58 P. syringae strains isolated from diseased zucchini plantlets was characterized by multilocus sequence analysis (MLSA). A subset of 23 strains responsible for vein clearing of zucchini (VCZ) was evaluated for pathogenicity on zucchini, and their genomes were sequenced. The host range of six VCZ strains was evaluated on 11 cucurbit species. Most VCZ strains belong to clades 2a and 2b-a within phylogroup 2 of P. syringae species complex and are closely related to other strains previously isolated from cucurbits. Genome analyses revealed diversity among VCZ strains within each clade. One main cluster, once referred to by the invalid pathovar name (peponis), gathers VCZ strains presenting a narrow host range including zucchini and squashes. Other VCZ strains present a large host range including zucchini, squashes, cucumber, melons, and in some cases watermelon. The VCZ strain pathogenic features are strongly associated with type III effector repertoires. The presence of avrRpt2 and absence of hopZ5 are associated with a narrow host range, whereas the presence of hopZ5 and absence of avrRpt2 are most generally associated with a large host range. To better detect the different clusters identified with whole genome sequence and pathogenicity analyses, we used a specific-k-mers approach to refine the MLSA scheme. Using this novel MLSA scheme to type P. syringae isolates from diseased cucurbits would give insight into distribution of worldwide strains and origin of epidemics.
Collapse
Affiliation(s)
- Caroline Lacault
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| | - Martial Briand
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| | - Armelle Darrasse
- Agrocampus-Ouest, INRAE, Université d'Angers, IRHS, 49071, Beaucouzé, France
| |
Collapse
|
11
|
Ferreira MASV, Bonneau S, Briand M, Cesbron S, Portier P, Darrasse A, Gama MAS, Barbosa MAG, Mariano RDLR, Souza EB, Jacques MA. Xanthomonas citri pv. viticola Affecting Grapevine in Brazil: Emergence of a Successful Monomorphic Pathogen. FRONTIERS IN PLANT SCIENCE 2019; 10:489. [PMID: 31057588 PMCID: PMC6482255 DOI: 10.3389/fpls.2019.00489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The pathovar viticola of Xanthomonas citri causes bacterial canker of grapevine. This disease was first recorded in India in 1972, and later in Brazil in 1998, where its distribution is currently restricted to the northeastern region. A multilocus sequence analysis (MLSA) based on seven housekeeping genes and a multilocus variable number of tandem repeat analysis (MLVA) with eight loci were performed in order to assess the genetic relatedness among strains from India and Brazil. Strains isolated in India from three related pathovars affecting Vitaceae species and pathogenic strains isolated from Amaranthus sp. found in bacterial canker-infected vineyards in Brazil were also included. MLSA revealed lack of diversity in all seven genes and grouped grapevine and Amaranthus strains in a monophyletic group in X. citri. The VNTR (variable number of tandem repeat) typing scheme conducted on 107 strains detected 101 haplotypes. The total number of alleles per locus ranged from 5 to 12. A minimum spanning tree (MST) showed that Brazilian strains were clearly separated from Indian strains, which showed unique alleles at three loci. The two strains isolated from symptomatic Amaranthus sp. presented unique alleles at two loci. STRUCTURE analyses revealed three groups congruent with MST and a fourth group with strains from India and Brazil. Admixture among populations were observed in all groups. MST, STRUCTURE and e-BURST analyses showed that the strains collected in 1998 belong to two distinct groups, with predicted founder genotypes from two different vineyards in the same region. This suggest that one introduction of grape planting materials contaminated with genetically distinct strains took place, which was followed by pathogen adaptation. Genome sequencing of one Brazilian strain confirmed typical attributes of pathogenic xanthomonads and allowed the design of a complementary VNTR typing scheme dedicated to X. citri pv. viticola that will allow further epidemiological survey of this genetically monomorphic pathovar.
Collapse
Affiliation(s)
| | - Sophie Bonneau
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Sophie Cesbron
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Perrine Portier
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Armelle Darrasse
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| | - Marco A. S. Gama
- Laboratório de Fitobacteriologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | | - Rosa de L. R. Mariano
- Laboratório de Fitobacteriologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Elineide B. Souza
- Laboratório de Fitobacteriologia, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, SFR4207 QUASAV, Université d’Angers, Beaucouzé, France
| |
Collapse
|
12
|
Denancé N, Briand M, Gaborieau R, Gaillard S, Jacques MA. Identification of genetic relationships and subspecies signatures in Xylella fastidiosa. BMC Genomics 2019; 20:239. [PMID: 30909861 PMCID: PMC6434890 DOI: 10.1186/s12864-019-5565-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The phytopathogenic bacterium Xylella fastidiosa was thought to be restricted to the Americas where it infects and kills numerous hosts. Its detection worldwide has been blooming since 2013 in Europe and Asia. Genetically diverse, this species is divided into six subspecies but genetic traits governing this classification are poorly understood. RESULTS SkIf (Specific k-mers Identification) was designed and exploited for comparative genomics on a dataset of 46 X. fastidiosa genomes, including seven newly sequenced individuals. It was helpful to quickly check the synonymy between strains from different collections. SkIf identified specific SNPs within 16S rRNA sequences that can be employed for predicting the distribution of Xylella through data mining. Applied to inter- and intra-subspecies analyses, it identified specific k-mers in genes affiliated to differential gene ontologies. Chemotaxis-related genes more prevalently possess specific k-mers in genomes from subspecies fastidiosa, morus and sandyi taken as a whole group. In the subspecies pauca increased abundance of specific k-mers was found in genes associated with the bacterial cell wall/envelope/plasma membrane. Most often, the k-mer specificity occurred in core genes with non-synonymous SNPs in their sequences in genomes of the other subspecies, suggesting putative impact in the protein functions. The presence of two integrative and conjugative elements (ICEs) was identified, one chromosomic and an entire plasmid in a single strain of X. fastidiosa subsp. pauca. Finally, a revised taxonomy of X. fastidiosa into three major clades defined by the subspecies pauca (clade I), multiplex (clade II) and the combination of fastidiosa, morus and sandyi (clade III) was strongly supported by k-mers specifically associated with these subspecies. CONCLUSIONS SkIf is a robust and rapid software, freely available, that can be dedicated to the comparison of sequence datasets and is applicable to any field of research. Applied to X. fastidiosa, an emerging pathogen in Europe, it provided an important resource to mine for identifying genetic markers of subspecies to optimize the strategies attempted to limit the pathogen dissemination in novel areas.
Collapse
Affiliation(s)
- Nicolas Denancé
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Romain Gaborieau
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Sylvain Gaillard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France.
| |
Collapse
|
13
|
Abstract
EuGene is an integrative gene finder applicable to both prokaryotic and eukaryotic genomes. EuGene annotated its first genome in 1999. Starting from genomic DNA sequences representing a complete genome, EuGene is able to predict the major transcript units in the genome from a variety of sources of information: statistical information, similarities with known transcripts and proteins, but also any GFF3 structured information supporting the presence or absence of specific types of elements. EuGene has been used to find genes in the plants Arabidopsis thaliana, Medicago truncatula, and Theobroma cacao; tomato, sunflower, and Rosa genomes; and in the nematode Meloidogyne incognita genome, among many others. The large fraction of plant in this list probably influenced EuGene development, especially in its capacities to withstand a genome with a large number of repeated regions and transposable elements.Depending on the sources of information used for prediction, EuGene can be considered as purely ab initio, purely similarity based, or hybrid. With the general availability of NGS-transcribed sequence data in genome projects, EuGene adopts a default hybrid behavior that strongly relies on similarity information. Initially targeted at eukaryotic genomes, EuGene has also been extended to offer integrative gene prediction for bacteria, allowing for richer and robust predictions than either purely statistical or homology-based prokaryotic gene finders.This text has been written as a practical guide that will give you the capacity to train and execute EuGene on your favorite eukaryotic genome. As the prokaryotic case is simpler and has already been described, only the main differences with the eukaryotic version were reported.
Collapse
|
14
|
Yu SH, Vogel J, Förstner KU. ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes. Gigascience 2018; 7:5087959. [PMID: 30169674 PMCID: PMC6123526 DOI: 10.1093/gigascience/giy096] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/.
Collapse
Affiliation(s)
- Sung-Huan Yu
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg Germany
| | - Konrad U Förstner
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany.,ZB MED - Information Center for Life Sciences, Informationservices, Gleueler Straße 60, 50931 Cologne (Köln), Germany.,Technical University of Cologne, Faculty for Information and Communication Sciences, Claudiusstraße 1, 50678 Cologne (Köln), Germany
| |
Collapse
|
15
|
Chen NWG, Serres-Giardi L, Ruh M, Briand M, Bonneau S, Darrasse A, Barbe V, Gagnevin L, Koebnik R, Jacques MA. Horizontal gene transfer plays a major role in the pathological convergence of Xanthomonas lineages on common bean. BMC Genomics 2018; 19:606. [PMID: 30103675 PMCID: PMC6090828 DOI: 10.1186/s12864-018-4975-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Host specialization is a hallmark of numerous plant pathogens including bacteria, fungi, oomycetes and viruses. Yet, the molecular and evolutionary bases of host specificity are poorly understood. In some cases, pathological convergence is observed for individuals belonging to distant phylogenetic clades. This is the case for Xanthomonas strains responsible for common bacterial blight of bean, spread across four genetic lineages. All the strains from these four lineages converged for pathogenicity on common bean, implying possible gene convergences and/or sharing of a common arsenal of genes conferring the ability to infect common bean. RESULTS To search for genes involved in common bean specificity, we used a combination of whole-genome analyses without a priori, including a genome scan based on k-mer search. Analysis of 72 genomes from a collection of Xanthomonas pathovars unveiled 115 genes bearing DNA sequences specific to strains responsible for common bacterial blight, including 20 genes located on a plasmid. Of these 115 genes, 88 were involved in successive events of horizontal gene transfers among the four genetic lineages, and 44 contained nonsynonymous polymorphisms unique to the causal agents of common bacterial blight. CONCLUSIONS Our study revealed that host specificity of common bacterial blight agents is associated with a combination of horizontal transfers of genes, and highlights the role of plasmids in these horizontal transfers.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Laurana Serres-Giardi
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Mylène Ruh
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Sophie Bonneau
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Armelle Darrasse
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| | - Valérie Barbe
- CEA/DSV/IG/Genoscope, 2 rue Gaston Crémieux, BP5706, 91057 Evry, France
| | - Lionel Gagnevin
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, La Réunion France
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Ralf Koebnik
- IRD, CIRAD, Université de Montpellier, IPME, Montpellier, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071 Beaucouzé, France
| |
Collapse
|
16
|
López MM, Lopez-Soriano P, Garita-Cambronero J, Beltrán C, Taghouti G, Portier P, Cubero J, Fischer-Le Saux M, Marco-Noales E. Xanthomonas prunicola sp. nov., a novel pathogen that affects nectarine (Prunus persica var. nectarina) trees. Int J Syst Evol Microbiol 2018; 68:1857-1866. [PMID: 29741474 DOI: 10.1099/ijsem.0.002743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Three isolates obtained from symptomatic nectarine trees (Prunus persica var. nectarina) cultivated in Murcia, Spain, which showed yellow and mucoid colonies similar to Xanthomonas arboricola pv. pruni, were negative after serological and real-time PCR analyses for this pathogen. For that reason, these isolates were characterized following a polyphasic approach that included both phenotypic and genomic methods. By sequence analysis of the 16S rRNA gene, these novel strains were identified as members of the genus Xanthomonas, and by multilocus sequence analysis (MLSA) they were clustered together in a distinct group that showed similarity values below 95 % with the rest of the species of this genus. Whole-genome comparisons of the average nucleotide identity (ANI) of genomes of the strains showed less than 91 % average nucleotide identity with all other species of the genus Xanthomonas. Additionally, phenotypic characterization based on API 20 NE, API 50 CH and BIOLOG tests differentiated the strains from the species of the genus Xanthomonas described previously. Moreover, the three strains were confirmed to be pathogenic on peach (Prunus persica), causing necrotic lesions on leaves. On the basis of these results, the novel strains represent a novel species of the genus Xanthomonas, for which the name Xanthomonas prunicola is proposed. The type strain is CFBP 8353 (=CECT 9404=IVIA 3287.1).
Collapse
Affiliation(s)
- María M López
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315 Km 10,7, 46113 Moncada, Valencia, Spain
| | - Pablo Lopez-Soriano
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315 Km 10,7, 46113 Moncada, Valencia, Spain
| | - Jerson Garita-Cambronero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7,5, 28040 Madrid, Spain.,Centro de Investigación de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León, 24358 Villarejo de Orbigo, León, Spain
| | - Carmen Beltrán
- Consejería de Agricultura y Agua. Comunidad Autónoma Región de Murcia, Calle Mayor s/n, 30150 La Alberca, Murcia, Spain
| | - Geraldine Taghouti
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, CIRM-CFBP, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Perrine Portier
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, CIRM-CFBP, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Jaime Cubero
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña Km 7,5, 28040 Madrid, Spain
| | - Marion Fischer-Le Saux
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, CIRM-CFBP, 42 rue Georges Morel, 49071 Beaucouzé cedex, France
| | - Ester Marco-Noales
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera CV-315 Km 10,7, 46113 Moncada, Valencia, Spain
| |
Collapse
|
17
|
Merda D, Briand M, Bosis E, Rousseau C, Portier P, Barret M, Jacques MA, Fischer-Le Saux M. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol Ecol 2017; 26:5939-5952. [PMID: 28869687 PMCID: PMC7168496 DOI: 10.1111/mec.14343] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
Abstract
Deciphering the evolutionary history and transmission patterns of virulence determinants is necessary to understand the emergence of novel pathogens. The main virulence determinant of most pathogenic proteobacteria is the type three secretion system (T3SS). The Xanthomonas genus includes bacteria responsible for numerous epidemics in agroecosystems worldwide and represents a major threat to plant health. The main virulence factor of Xanthomonas is the Hrp2 family T3SS; however, this system is not conserved in all strains and it has not been previously determined whether the distribution of T3SS in this bacterial genus has resulted from losses or independent acquisitions. Based on comparative genomics of 82 genome sequences representing the diversity of the genus, we have inferred three ancestral acquisitions of the Hrp2 cluster during Xanthomonas evolution followed by subsequent losses in some commensal strains and re‐acquisition in some species. While mutation was the main force driving polymorphism at the gene level, interspecies homologous recombination of large fragments expanding through several genes shaped Hrp2 cluster polymorphism. Horizontal gene transfer of the entire Hrp2 cluster also occurred. A reduced core effectome composed of xopF1, xopM, avrBs2 and xopR was identified that may allow commensal strains overcoming plant basal immunity. In contrast, stepwise accumulation of numerous type 3 effector genes was shown in successful pathogens responsible for epidemics. Our data suggest that capacity to intimately interact with plants through T3SS would be an ancestral trait of xanthomonads. Since its acquisition, T3SS has experienced a highly dynamic evolutionary history characterized by intense gene flux between species that may reflect its role in host adaptation.
Collapse
Affiliation(s)
- Déborah Merda
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Martial Briand
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Eran Bosis
- Department of Biotechnology Engineering, ORT Braude College, Karmiel, Israel
| | - Céline Rousseau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Perrine Portier
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Matthieu Barret
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé, France
| | | |
Collapse
|
18
|
Ruh M, Briand M, Bonneau S, Jacques MA, Chen NWG. Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors. BMC Genomics 2017; 18:670. [PMID: 28854875 PMCID: PMC5577687 DOI: 10.1186/s12864-017-4087-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/24/2017] [Indexed: 12/25/2022] Open
Abstract
Background Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption. Results To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean. Conclusions Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally transferred between distant lineages. Electronic supplementary material The online version of this article (10.1186/s12864-017-4087-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mylène Ruh
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Martial Briand
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Sophie Bonneau
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France
| | - Nicolas W G Chen
- IRHS, INRA, AGROCAMPUS OUEST, Université d'Angers, SFR4207 QUASAV, 42, rue Georges Morel, 49071, Beaucouzé, France.
| |
Collapse
|
19
|
Volpicella M, Leoni C, Manzari C, Chiara M, Picardi E, Piancone E, Italiano F, D'Erchia A, Trotta M, Horner DS, Pesole G, Ceci LR. Transcriptomic analysis of nickel exposure in Sphingobium sp. ba1 cells using RNA-seq. Sci Rep 2017; 7:8262. [PMID: 28811613 PMCID: PMC5557971 DOI: 10.1038/s41598-017-08934-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Nickel acts as cofactor for a number of enzymes of many bacteria species. Its homeostasis is ensured by proteins working as ion efflux or accumulation systems. These mechanisms are also generally adopted to counteract life-threatening high extra-cellular Ni2+ concentrations. Little is known regarding nickel tolerance in the genus Sphingobium. We studied the response of the novel Sphingobium sp. ba1 strain, able to adapt to high Ni2+ concentrations. Differential gene expression in cells cultured in 10 mM Ni2+, investigated by RNA-seq analysis, identified 118 differentially expressed genes. Among the 90 up-regulated genes, a cluster including genes coding for nickel and other metal ion efflux systems (similar to either cnrCBA, nccCBA or cznABC) and for a NreB-like permease was found. Comparative analyses among thirty genomes of Sphingobium species show that this cluster is conserved only in two cases, while in the other genomes it is partially present or even absent. The differential expression of genes encoding proteins which could also work as Ni2+-accumulators (HupE/UreJ-like protein, NreA and components of TonB-associated transport and copper-homeostasis systems) was also detected. The identification of Sphingobium sp. ba1 strain adaptive mechanisms to nickel ions, can foster its possible use for biodegradation of poly-aromatic compounds in metal-rich environments.
Collapse
Affiliation(s)
- M Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - C Leoni
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - C Manzari
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - M Chiara
- Department of Biosciences, University of Milan, Milan, Italy
| | - E Picardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - E Piancone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - F Italiano
- IPCF-CNR, Institute for Chemical-Physical Processes, Bari, Italy
| | - A D'Erchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - M Trotta
- IPCF-CNR, Institute for Chemical-Physical Processes, Bari, Italy
| | - D S Horner
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy.,Department of Biosciences, University of Milan, Milan, Italy
| | - G Pesole
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - L R Ceci
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy.
| |
Collapse
|
20
|
Kremer FS, Eslabão MR, Dellagostin OA, Pinto LDS. Genix: a new online automated pipeline for bacterial genome annotation. FEMS Microbiol Lett 2016; 363:fnw263. [DOI: 10.1093/femsle/fnw263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/30/2016] [Accepted: 11/15/2016] [Indexed: 12/23/2022] Open
|
21
|
López-Soriano P, Boyer K, Cesbron S, Morente MC, Peñalver J, Palacio-Bielsa A, Vernière C, López MM, Pruvost O. Multilocus Variable Number of Tandem Repeat Analysis Reveals Multiple Introductions in Spain of Xanthomonas arboricola pv. pruni, the Causal Agent of Bacterial Spot Disease of Stone Fruits and Almond. PLoS One 2016; 11:e0163729. [PMID: 27669415 PMCID: PMC5036818 DOI: 10.1371/journal.pone.0163729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/13/2016] [Indexed: 12/05/2022] Open
Abstract
Xanthomonas arboricola pv. pruni is the causal agent of the bacterial spot disease of stone fruits, almond and some ornamental Prunus species. In Spain it was first detected in 2002 and since then, several outbreaks have occurred in different regions affecting mainly Japanese plum, peach and almond, both in commercial orchards and nurseries. As the origin of the introduction(s) was unknown, we have assessed the genetic diversity of 239 X. arboricola pv. pruni strains collected from 11 Spanish provinces from 2002 to 2013 and 25 reference strains from international collections. We have developed an optimized multilocus variable number of tandem repeat analysis (MLVA) scheme targeting 18 microsatellites and five minisatellites. A high discriminatory power was achieved since almost 50% of the Spanish strains were distinguishable, confirming the usefulness of this genotyping technique at small spatio-temporal scales. Spanish strains grouped in 18 genetic clusters (conservatively delineated so that each cluster contained haplotype networks linked by up to quadruple-locus variations). Furthermore, pairwise comparisons among populations from different provinces showed a strong genetic differentiation. Our results suggest multiple introductions of this pathogen in Spain and redistribution through contaminated nursery propagative plant material.
Collapse
Affiliation(s)
| | - Karine Boyer
- UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, La Réunion, France
| | - Sophie Cesbron
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | | | - Javier Peñalver
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Ana Palacio-Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón. Instituto Agroalimentario de Aragón, IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Christian Vernière
- UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, La Réunion, France
- UMR Biologie et Génétique des Interactions Plante-Parasite, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - María M. López
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
- * E-mail:
| | - Olivier Pruvost
- UMR Peuplement Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Saint-Pierre, La Réunion, France
| |
Collapse
|
22
|
Ceizel Borella G, Lagares A, Valverde C. Expression of the Sinorhizobium meliloti small RNA gene mmgR is controlled by the nitrogen source. FEMS Microbiol Lett 2016; 363:fnw069. [PMID: 27010014 DOI: 10.1093/femsle/fnw069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2016] [Indexed: 01/30/2023] Open
Abstract
Small non-coding regulatory RNAs (sRNAs) are key players in post-transcriptional regulation of gene expression. Hundreds of sRNAs have been identified in Sinorhizobium meliloti, but their biological function remains unknown for most of them. In this study, we characterized the expression pattern of the gene encoding the 77-nt sRNA MmgR in S. meliloti strain 2011. A chromosomal transcriptional reporter fusion (PmmgR-gfp) showed that the mmgR promoter is active along different stages of the interaction with alfalfa roots. In pure cultures, PmmgR-gfp activity paralleled the sRNA abundance indicating that mmgR expression is primarily controlled at the level of transcriptional initiation. PmmgR-gfp activity was higher during growth in rhizobial defined medium (RDM) than in TY medium. Furthermore, PmmgR-gfp was induced at 60 min after shifting growing cells from TY to RDM medium, i.e. shorter than the cell doubling time. In defined RDM medium containing NO3 (-), both PmmgR-gfp and MmgR level were repressed by the addition of tryptone or single amino acids, suggesting that mmgR expression depends on the cellular nitrogen (N) status. In silico analysis failed to detect conserved motifs upstream the promoter RNA polymerase binding site, but revealed a strongly conserved motif centered at -28 that may be linked to the observed regulatory pattern by the N source.
Collapse
Affiliation(s)
- Germán Ceizel Borella
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Antonio Lagares
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
23
|
Jacques MA, Denancé N, Legendre B, Morel E, Briand M, Mississipi S, Durand K, Olivier V, Portier P, Poliakoff F, Crouzillat D. New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination. Appl Environ Microbiol 2015; 82:1556-68. [PMID: 26712553 PMCID: PMC4771316 DOI: 10.1128/aem.03299-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/19/2015] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants.
Collapse
Affiliation(s)
- Marie-Agnès Jacques
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Nicolas Denancé
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France Anses Laboratoire de la Santé des Végétaux, Angers, France
| | - Bruno Legendre
- Anses Laboratoire de la Santé des Végétaux, Angers, France
| | | | - Martial Briand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Stelly Mississipi
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France Anses Laboratoire de la Santé des Végétaux, Angers, France Nestlé R&D Tours, Tours, France
| | - Karine Durand
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | | | - Perrine Portier
- INRA, UMR1345 Institut de Recherche en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | | | | |
Collapse
|
24
|
Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. FRONTIERS IN PLANT SCIENCE 2015; 6:1126. [PMID: 26734033 DOI: 10.3389/fpls.2015.01126.ecollection2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/27/2015] [Indexed: 05/24/2023]
Abstract
The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.
Collapse
Affiliation(s)
- Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Martial Briand
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Salwa Essakhi
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Sophie Gironde
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Tristan Boureau
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences Angers, France
| | - Charles Manceau
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | | | - Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| |
Collapse
|
25
|
Whole-Genome Sequencing of 10 Pseudomonas syringae Strains Representing Different Host Range Spectra. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00379-15. [PMID: 25931602 PMCID: PMC4417698 DOI: 10.1128/genomea.00379-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas syringae is a ubiquitous bacterium that readily persists in environmental habitats as a saprophyte and also is responsible for numerous diseases of crops. Here, we report the whole-genome sequences of 10 strains isolated from both woody and herbaceous plants that will contribute to the elucidation of the determinants of their host ranges.
Collapse
|
26
|
Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. FRONTIERS IN PLANT SCIENCE 2015; 6:1126. [PMID: 26734033 PMCID: PMC4686621 DOI: 10.3389/fpls.2015.01126] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/27/2015] [Indexed: 05/03/2023]
Abstract
The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.
Collapse
Affiliation(s)
- Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
- *Correspondence: Sophie Cesbron
| | - Martial Briand
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Salwa Essakhi
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Sophie Gironde
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Tristan Boureau
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et SemencesAngers, France
| | - Charles Manceau
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | | | - Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| |
Collapse
|