1
|
Břinda K, Lima L, Pignotti S, Quinones-Olvera N, Salikhov K, Chikhi R, Kucherov G, Iqbal Z, Baym M. Efficient and robust search of microbial genomes via phylogenetic compression. Nat Methods 2025; 22:692-697. [PMID: 40205174 DOI: 10.1038/s41592-025-02625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/12/2025] [Indexed: 04/11/2025]
Abstract
Comprehensive collections approaching millions of sequenced genomes have become central information sources in the life sciences. However, the rapid growth of these collections has made it effectively impossible to search these data using tools such as the Basic Local Alignment Search Tool (BLAST) and its successors. Here, we present a technique called phylogenetic compression, which uses evolutionary history to guide compression and efficiently search large collections of microbial genomes using existing algorithms and data structures. We show that, when applied to modern diverse collections approaching millions of genomes, lossless phylogenetic compression improves the compression ratios of assemblies, de Bruijn graphs and k-mer indexes by one to two orders of magnitude. Additionally, we develop a pipeline for a BLAST-like search over these phylogeny-compressed reference data, and demonstrate it can align genes, plasmids or entire sequencing experiments against all sequenced bacteria until 2019 on ordinary desktop computers within a few hours. Phylogenetic compression has broad applications in computational biology and may provide a fundamental design principle for future genomics infrastructure.
Collapse
Affiliation(s)
- Karel Břinda
- Inria, Irisa, Univ. Rennes, Rennes, France.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | | | - Simone Pignotti
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- LIGM, CNRS, Univ. Gustave Eiffel, Marne-la-Vallée, France
| | | | - Kamil Salikhov
- LIGM, CNRS, Univ. Gustave Eiffel, Marne-la-Vallée, France
| | - Rayan Chikhi
- Institut Pasteur, Univ. Paris Cité, G5 Sequence Bioinformatics, Paris, France
| | | | - Zamin Iqbal
- EMBL-EBI, Hinxton, UK
- Milner Centre for Evolution, University of Bath, Bath, UK
| | - Michael Baym
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sun Z, Wang M, Wang S, Kwong S. LEC-Codec: Learning-Based Genome Data Compression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2447-2458. [PMID: 39361454 DOI: 10.1109/tcbb.2024.3473899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this paper, we propose a Learning-based gEnome Codec (LEC), which is designed for high efficiency and enhanced flexibility. The LEC integrates several advanced technologies, including Group of Bases (GoB) compression, multi-stride coding and bidirectional prediction, all of which are aimed at optimizing the balance between coding complexity and performance in lossless compression. The model applied in our proposed codec is data-driven, based on deep neural networks to infer probabilities for each symbol, enabling fully parallel encoding and decoding with configured complexity for diverse applications. Based upon a set of configurations on compression ratios and inference speed, experimental results show that the proposed method is very efficient in terms of compression performance and provides improved flexibility in real-world applications.
Collapse
|
3
|
Zheng H, Marçais G, Kingsford C. Creating and Using Minimizer Sketches in Computational Genomics. J Comput Biol 2023; 30:1251-1276. [PMID: 37646787 PMCID: PMC11082048 DOI: 10.1089/cmb.2023.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Processing large data sets has become an essential part of computational genomics. Greatly increased availability of sequence data from multiple sources has fueled breakthroughs in genomics and related fields but has led to computational challenges processing large sequencing experiments. The minimizer sketch is a popular method for sequence sketching that underlies core steps in computational genomics such as read mapping, sequence assembling, k-mer counting, and more. In most applications, minimizer sketches are constructed using one of few classical approaches. More recently, efforts have been put into building minimizer sketches with desirable properties compared with the classical constructions. In this survey, we review the history of the minimizer sketch, the theories developed around the concept, and the plethora of applications taking advantage of such sketches. We aim to provide the readers a comprehensive picture of the research landscape involving minimizer sketches, in anticipation of better fusion of theory and application in the future.
Collapse
Affiliation(s)
- Hongyu Zheng
- Computer Science Department, Princeton University, Princeton, New Jersey, USA
| | - Guillaume Marçais
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carl Kingsford
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Staniscia L, Yu YW. Image-centric compression of protein structures improves space savings. BMC Bioinformatics 2023; 24:437. [PMID: 37990290 PMCID: PMC10664254 DOI: 10.1186/s12859-023-05570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Because of the rapid generation of data, the study of compression algorithms to reduce storage and transmission costs is important to bioinformaticians. Much of the focus has been on sequence data, including both genomes and protein amino acid sequences stored in FASTA files. Current standard practice is to use an ordinary lossless compressor such as gzip on a sequential list of atomic coordinates, but this approach expends bits on saving an arbitrary ordering of atoms, and it also prevents reordering the atoms for compressibility. The standard MMTF and BCIF file formats extend this approach with custom encoding of the coordinates. However, the brand new Foldcomp tool introduces a new paradigm of compressing local angles, to great effect. In this article, we explore a different paradigm, showing for the first time that image-based compression using global angles can also significantly improve compression ratios. To this end, we implement a prototype compressor 'PIC', specialized for point clouds of atom coordinates contained in PDB and mmCIF files. PIC maps the 3D data to a 2D 8-bit greyscale image and leverages the well developed PNG image compressor to minimize the size of the resulting image, forming the compressed file. RESULTS PIC outperforms gzip in terms of compression ratio on proteins over 20,000 atoms in size, with a savings over gzip of up to 37.4% on the proteins compressed. In addition, PIC's compression ratio increases with protein size. CONCLUSION Image-centric compression as demonstrated by our prototype PIC provides a potential means of constructing 3D structure-aware protein compression software, though future work would be necessary to make this practical.
Collapse
Affiliation(s)
- Luke Staniscia
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Yun William Yu
- Department of Mathematics, University of Toronto, Toronto, ON, Canada.
- Ray and Stephanie Lane Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Huo H, Chen X, Guo X, Vitter JS. Efficient Compression and Indexing for Highly Repetitive DNA Sequence Collections. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2394-2408. [PMID: 31985436 DOI: 10.1109/tcbb.2020.2968323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this paper, we focus upon the important problem of indexing and searching highly repetitive DNA sequence collections. Given a collection G of t sequences Si of length n each, we can represent G succinctly in 2nHk(T) + O(n' loglogn) + o(q n') + o(tn) bits using O(t n2 + q n') time, where Hk(T) is the kth-order empirical entropy of the sequence T ∈ G that is used as the reference sequence, n' is the total number of variations between T and the sequences in G, and q is a small fixed constant. We can restore any length len substring S[ sp, ..., sp + len-1] of S ∈ G in O(ns' + len(logn)2 / loglogn) time and report all positions where P occurs in G in O(m ·t + occ ·t ·(logn)2/loglogn ) time. In addition, we propose a dynamic programming method to find the variations between T and the sequences in G in a space-efficient way, with which we can build succinct structures to enable efficient search. For highly repetitive sequences, experimental results on the tested data demonstrate that the proposed method has significant advantages in space usage and retrieval time over the current state-of-the-art methods. The source code is available online.
Collapse
|
6
|
Morales VS, Houghten S. Lossy Compression of Quality Values in Sequencing Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1958-1969. [PMID: 31869798 DOI: 10.1109/tcbb.2019.2959273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dropping cost of sequencing human DNA has allowed for fast development of several projects around the world generating huge amounts of DNA sequencing data. This deluge of data has run up against limited storage space, a problem that researchers are trying to solve through compression techniques. In this study we address the compression of SAM files, the standard output files for DNA alignment. We specifically study lossy compression techniques used for quality values reported in the SAM file and analyze the impact of such lossy techniques on the CRAM format. We present a series of experiments using a data set corresponding to individual NA12878 with three different fold coverages. We introduce a new lossy model, dynamic binning, and compare its performance to other lossy techniques, namely Illumina binning, LEON and QVZ. We analyze the compression ratio when using CRAM and also study the impact of the lossy techniques on SNP calling. Our results show that lossy techniques allow a better CRAM compression ratio. Furthermore, we show that SNP calling performance is not negatively affected and may even be boosted.
Collapse
|
7
|
Liu Y, Li J. Hamming-shifting graph of genomic short reads: Efficient construction and its application for compression. PLoS Comput Biol 2021; 17:e1009229. [PMID: 34280186 PMCID: PMC8321399 DOI: 10.1371/journal.pcbi.1009229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/29/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022] Open
Abstract
Graphs such as de Bruijn graphs and OLC (overlap-layout-consensus) graphs have been widely adopted for the de novo assembly of genomic short reads. This work studies another important problem in the field: how graphs can be used for high-performance compression of the large-scale sequencing data. We present a novel graph definition named Hamming-Shifting graph to address this problem. The definition originates from the technological characteristics of next-generation sequencing machines, aiming to link all pairs of distinct reads that have a small Hamming distance or a small shifting offset or both. We compute multiple lexicographically minimal k-mers to index the reads for an efficient search of the weight-lightest edges, and we prove a very high probability of successfully detecting these edges. The resulted graph creates a full mutual reference of the reads to cascade a code-minimized transfer of every child-read for an optimal compression. We conducted compression experiments on the minimum spanning forest of this extremely sparse graph, and achieved a 10 - 30% more file size reduction compared to the best compression results using existing algorithms. As future work, the separation and connectivity degrees of these giant graphs can be used as economical measurements or protocols for quick quality assessment of wet-lab machines, for sufficiency control of genomic library preparation, and for accurate de novo genome assembly.
Collapse
Affiliation(s)
- Yuansheng Liu
- Data Science Institute, University of Technology Sydney, Sydney, Australia
| | - Jinyan Li
- Data Science Institute, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
8
|
Tang T, Li J. Transformation of FASTA files into feature vectors for unsupervised compression of short reads databases. J Bioinform Comput Biol 2021; 19:2050048. [PMID: 33472569 DOI: 10.1142/s0219720020500481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
FASTA data sets of short reads are usually generated in tens or hundreds for a biomedical study. However, current compression of these data sets is carried out one-by-one without consideration of the inter-similarity between the data sets which can be otherwise exploited to enhance compression performance of de novo compression. We show that clustering these data sets into similar sub-groups for a group-by-group compression can greatly improve the compression performance. Our novel idea is to detect the lexicographically smallest k-mer (k-minimizer) for every read in each data set, and uses these k-mers as features and their frequencies in every data set as feature values to transform these huge data sets each into a characteristic feature vector. Unsupervised clustering algorithms are then applied to these vectors to find similar data sets and merge them. As the amount of common k-mers of similar feature values between two data sets implies an excessive proportion of overlapping reads shared between the two data sets, merging similar data sets creates immense sequence redundancy to boost the compression performance. Experiments confirm that our clustering approach can gain up to 12% improvement over several state-of-the-art algorithms in compressing reads databases consisting of 17-100 data sets (48.57-197.97[Formula: see text]GB).
Collapse
Affiliation(s)
- Tao Tang
- Advanced Analytics Institute, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Jinyan Li
- Advanced Analytics Institute, Faculty of Engineering and IT, University of Technology Sydney, Broadway, NSW 2007, Australia
| |
Collapse
|
9
|
Kowalski TM, Grabowski S. PgRC: pseudogenome-based read compressor. Bioinformatics 2020; 36:2082-2089. [PMID: 31893286 DOI: 10.1093/bioinformatics/btz919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 01/26/2023] Open
Abstract
MOTIVATION The amount of sequencing data from high-throughput sequencing technologies grows at a pace exceeding the one predicted by Moore's law. One of the basic requirements is to efficiently store and transmit such huge collections of data. Despite significant interest in designing FASTQ compressors, they are still imperfect in terms of compression ratio or decompression resources. RESULTS We present Pseudogenome-based Read Compressor (PgRC), an in-memory algorithm for compressing the DNA stream, based on the idea of building an approximation of the shortest common superstring over high-quality reads. Experiments show that PgRC wins in compression ratio over its main competitors, SPRING and Minicom, by up to 15 and 20% on average, respectively, while being comparably fast in decompression. AVAILABILITY AND IMPLEMENTATION PgRC can be downloaded from https://github.com/kowallus/PgRC. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tomasz M Kowalski
- Institute of Applied Computer Science, Lodz University of Technology, Lodz 90-924, Poland
| | - Szymon Grabowski
- Institute of Applied Computer Science, Lodz University of Technology, Lodz 90-924, Poland
| |
Collapse
|
10
|
Liu Y, Yu Z, Dinger ME, Li J. Index suffix-prefix overlaps by (w, k)-minimizer to generate long contigs for reads compression. Bioinformatics 2020; 35:2066-2074. [PMID: 30407482 DOI: 10.1093/bioinformatics/bty936] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 01/23/2023] Open
Abstract
MOTIVATION Advanced high-throughput sequencing technologies have produced massive amount of reads data, and algorithms have been specially designed to contract the size of these datasets for efficient storage and transmission. Reordering reads with regard to their positions in de novo assembled contigs or in explicit reference sequences has been proven to be one of the most effective reads compression approach. As there is usually no good prior knowledge about the reference sequence, current focus is on the novel construction of de novo assembled contigs. RESULTS We introduce a new de novo compression algorithm named minicom. This algorithm uses large k-minimizers to index the reads and subgroup those that have the same minimizer. Within each subgroup, a contig is constructed. Then some pairs of the contigs derived from the subgroups are merged into longer contigs according to a (w, k)-minimizer-indexed suffix-prefix overlap similarity between two contigs. This merging process is repeated after the longer contigs are formed until no pair of contigs can be merged. We compare the performance of minicom with two reference-based methods and four de novo methods on 18 datasets (13 RNA-seq datasets and 5 whole genome sequencing datasets). In the compression of single-end reads, minicom obtained the smallest file size for 22 of 34 cases with significant improvement. In the compression of paired-end reads, minicom achieved 20-80% compression gain over the best state-of-the-art algorithm. Our method also achieved a 10% size reduction of compressed files in comparison with the best algorithm under the reads-order preserving mode. These excellent performances are mainly attributed to the exploit of the redundancy of the repetitive substrings in the long contigs. AVAILABILITY AND IMPLEMENTATION https://github.com/yuansliu/minicom. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuansheng Liu
- Advanced Analytics Institute, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Zuguo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan, China.,School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Jinyan Li
- Advanced Analytics Institute, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
11
|
Tomczyk S, Suknovic N, Schenkelaars Q, Wenger Y, Ekundayo K, Buzgariu W, Bauer C, Fischer K, Austad S, Galliot B. Deficient autophagy in epithelial stem cells drives aging in the freshwater cnidarian Hydra. Development 2020; 147:dev.177840. [PMID: 31862842 PMCID: PMC6983715 DOI: 10.1242/dev.177840] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Abstract
Hydra possesses three distinct stem cell populations that continuously self-renew and prevent aging in Hydra vulgaris. However, sexual animals from the H. oligactis cold-sensitive strain Ho_CS develop an aging phenotype upon gametogenesis induction, initiated by the loss of interstitial stem cells. Animals stop regenerating, lose their active behaviors and die within 3 months. This phenotype is not observed in the cold-resistant strain Ho_CR. To dissect the mechanisms of Hydra aging, we compared the self-renewal of epithelial stem cells in these two strains and found it to be irreversibly reduced in aging Ho_CS but sustained in non-aging Ho_CR. We also identified a deficient autophagy in Ho_CS epithelial cells, with a constitutive deficiency in autophagosome formation as detected with the mCherry-eGFP-LC3A/B autophagy sensor, an inefficient response to starvation as evidenced by the accumulation of the autophagosome cargo protein p62/SQSTM1, and a poorly inducible autophagy flux upon proteasome inhibition. In the non-aging H. vulgaris animals, the blockade of autophagy by knocking down WIPI2 suffices to induce aging. This study highlights the essential role of a dynamic autophagy flux to maintain epithelial stem cell renewal and prevent aging. Summary: Lack of epithelial stem cell renewal and deficient epithelial autophagy are the major causes of aging in Hydra oligactis, whereas lowering autophagy efficiency in the non-aging Hydra vulgaris induces an aging phenotype.
Collapse
Affiliation(s)
- Szymon Tomczyk
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Nenad Suknovic
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Quentin Schenkelaars
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Yvan Wenger
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Kazadi Ekundayo
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Wanda Buzgariu
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Christoph Bauer
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| | - Kathleen Fischer
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
12
|
Abstract
The amount of data produced by modern sequencing instruments that needs to be stored is huge. Therefore it is not surprising that a lot of work has been done in the field of specialized data compression of FASTQ files. The existing algorithms are, however, still imperfect and the best tools produce quite large archives. We present FQSqueezer, a novel compression algorithm for sequencing data able to process single- and paired-end reads of variable lengths. It is based on the ideas from the famous prediction by partial matching and dynamic Markov coder algorithms known from the general-purpose-compressors world. The compression ratios are often tens of percent better than offered by the state-of-the-art tools. The drawbacks of the proposed method are large memory and time requirements.
Collapse
|
13
|
Roguski L, Ochoa I, Hernaez M, Deorowicz S. FaStore: a space-saving solution for raw sequencing data. Bioinformatics 2019; 34:2748-2756. [PMID: 29617939 DOI: 10.1093/bioinformatics/bty205] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/27/2018] [Indexed: 12/29/2022] Open
Abstract
Motivation The affordability of DNA sequencing has led to the generation of unprecedented volumes of raw sequencing data. These data must be stored, processed and transmitted, which poses significant challenges. To facilitate this effort, we introduce FaStore, a specialized compressor for FASTQ files. FaStore does not use any reference sequences for compression and permits the user to choose from several lossy modes to improve the overall compression ratio, depending on the specific needs. Results FaStore in the lossless mode achieves a significant improvement in compression ratio with respect to previously proposed algorithms. We perform an analysis on the effect that the different lossy modes have on variant calling, the most widely used application for clinical decision making, especially important in the era of precision medicine. We show that lossy compression can offer significant compression gains, while preserving the essential genomic information and without affecting the variant calling performance. Availability and implementation FaStore can be downloaded from https://github.com/refresh-bio/FaStore. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lukasz Roguski
- Centro Nacional de Análisis Genómico-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (CNAG-CRG), Barcelona, Spain.,Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Idoia Ochoa
- Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA
| | - Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Sebastian Deorowicz
- Institute of Informatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
14
|
Abstract
Recently, there has been growing interest in genome sequencing, driven by advances in sequencing technology, in terms of both efficiency and affordability. These developments have allowed many to envision whole-genome sequencing as an invaluable tool for both personalized medical care and public health. As a result, increasingly large and ubiquitous genomic data sets are being generated. This poses a significant challenge for the storage and transmission of these data. Already, it is more expensive to store genomic data for a decade than it is to obtain the data in the first place. This situation calls for efficient representations of genomic information. In this review, we emphasize the need for designing specialized compressors tailored to genomic data and describe the main solutions already proposed. We also give general guidelines for storing these data and conclude with our thoughts on the future of genomic formats and compressors.
Collapse
Affiliation(s)
- Mikel Hernaez
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| | - Dmitri Pavlichin
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Tsachy Weissman
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Idoia Ochoa
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
15
|
Chandak S, Tatwawadi K, Weissman T. Compression of genomic sequencing reads via hash-based reordering: algorithm and analysis. Bioinformatics 2018; 34:558-567. [PMID: 29444237 DOI: 10.1093/bioinformatics/btx639] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/06/2017] [Indexed: 12/30/2022] Open
Abstract
Motivation New Generation Sequencing (NGS) technologies for genome sequencing produce large amounts of short genomic reads per experiment, which are highly redundant and compressible. However, general-purpose compressors are unable to exploit this redundancy due to the special structure present in the data. Results We present a new algorithm for compressing reads both with and without preserving the read order. In both cases, it achieves 1.4×-2× compression gain over state-of-the-art read compression tools for datasets containing as many as 3 billion Illumina reads. Our tool is based on the idea of approximately reordering the reads according to their position in the genome using hashed substring indices. We also present a systematic analysis of the read compression problem and compute bounds on fundamental limits of read compression. This analysis sheds light on the dynamics of the proposed algorithm (and read compression algorithms in general) and helps understand its performance in practice. The algorithm compresses only the read sequence, works with unaligned FASTQ files, and does not require a reference. Contact schandak@stanford.edu. Supplementary information Supplementary material are available at Bioinformatics online. The proposed algorithm is available for download at https://github.com/shubhamchandak94/HARC.
Collapse
Affiliation(s)
- Shubham Chandak
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kedar Tatwawadi
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tsachy Weissman
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Wang R, Li J, Bai Y, Zang T, Wang Y. BdBG: a bucket-based method for compressing genome sequencing data with dynamic de Bruijn graphs. PeerJ 2018; 6:e5611. [PMID: 30364599 PMCID: PMC6197042 DOI: 10.7717/peerj.5611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/13/2018] [Indexed: 02/01/2023] Open
Abstract
Dramatic increases in data produced by next-generation sequencing (NGS) technologies demand data compression tools for saving storage space. However, effective and efficient data compression for genome sequencing data has remained an unresolved challenge in NGS data studies. In this paper, we propose a novel alignment-free and reference-free compression method, BdBG, which is the first to compress genome sequencing data with dynamic de Bruijn graphs based on the data after bucketing. Compared with existing de Bruijn graph methods, BdBG only stored a list of bucket indexes and bifurcations for the raw read sequences, and this feature can effectively reduce storage space. Experimental results on several genome sequencing datasets show the effectiveness of BdBG over three state-of-the-art methods. BdBG is written in python and it is an open source software distributed under the MIT license, available for download at https://github.com/rongjiewang/BdBG.
Collapse
Affiliation(s)
- Rongjie Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, HeiLongJiang, China
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Yang Bai
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, HeiLongJiang, China
| | - Tianyi Zang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, HeiLongJiang, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, HeiLongJiang, China
| |
Collapse
|
17
|
Holley G, Wittler R, Stoye J, Hach F. Dynamic Alignment-Free and Reference-Free Read Compression. J Comput Biol 2018; 25:825-836. [PMID: 30011247 DOI: 10.1089/cmb.2018.0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The advent of high throughput sequencing (HTS) technologies raises a major concern about storage and transmission of data produced by these technologies. In particular, large-scale sequencing projects generate an unprecedented volume of genomic sequences ranging from tens to several thousands of genomes per species. These collections contain highly similar and redundant sequences, also known as pangenomes. The ideal way to represent and transfer pangenomes is through compression. A number of HTS-specific compression tools have been developed to reduce the storage and communication costs of HTS data, yet none of them is designed to process a pangenome. In this article, we present dynamic alignment-free and reference-free read compression (DARRC), a new alignment-free and reference-free compression method. It addresses the problem of pangenome compression by encoding the sequences of a pangenome as a guided de Bruijn graph. The novelty of this method is its ability to incrementally update DARRC archives with new genome sequences without full decompression of the archive. DARRC can compress both single-end and paired-end read sequences of any length using all symbols of the IUPAC nucleotide code. On a large Pseudomonas aeruginosa data set, our method outperforms all other tested tools. It provides a 30% compression ratio improvement in single-end mode compared with the best performing state-of-the-art HTS-specific compression method in our experiments.
Collapse
Affiliation(s)
- Guillaume Holley
- 1 Genome Informatics, Faculty of Technology, Center for Biotechnology, Bielefeld University , Bielefeld, Germany .,2 International Research Training Group 1906 "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes," Bielefeld University , Bielefeld, Germany
| | - Roland Wittler
- 1 Genome Informatics, Faculty of Technology, Center for Biotechnology, Bielefeld University , Bielefeld, Germany .,2 International Research Training Group 1906 "Computational Methods for the Analysis of the Diversity and Dynamics of Genomes," Bielefeld University , Bielefeld, Germany
| | - Jens Stoye
- 1 Genome Informatics, Faculty of Technology, Center for Biotechnology, Bielefeld University , Bielefeld, Germany
| | - Faraz Hach
- 3 School of Computing Science, Simon Fraser University , Burnaby, Canada .,4 Department of Urologic Sciences, University of British Columbia , Vancouver, Canada .,5 Vancouver Prostate Centre , Vancouver, Canada
| |
Collapse
|
18
|
Optimal compressed representation of high throughput sequence data via light assembly. Nat Commun 2018; 9:566. [PMID: 29422526 PMCID: PMC5805770 DOI: 10.1038/s41467-017-02480-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
The most effective genomic data compression methods either assemble reads into contigs, or replace them with their alignment positions on a reference genome. Such methods require significant computational resources, but faster alternatives that avoid using explicit or de novo-constructed references fail to match their performance. Here, we introduce a new reference-free compressed representation for genomic data based on light de novo assembly of reads, where each read is represented as a node in a (compact) trie. We show how to efficiently build such tries to compactly represent reads and demonstrate that among all methods using this representation (including all de novo assembly based methods), our method achieves the shortest possible output. We also provide an lower bound on the compression rate achievable on uniformly sampled genomic read data, which is approximated by our method well. Our method significantly improves the compression performance of alternatives without compromising speed. Increase in high throughput sequencing (HTS) data warrants compression methods to facilitate better storage and communication. Here, Ginart et al. introduce Assembltrie, a reference-free compression tool which is guaranteed to achieve optimality for error-free reads.
Collapse
|
19
|
Huang ZA, Wen Z, Deng Q, Chu Y, Sun Y, Zhu Z. LW-FQZip 2: a parallelized reference-based compression of FASTQ files. BMC Bioinformatics 2017; 18:179. [PMID: 28320326 PMCID: PMC5359991 DOI: 10.1186/s12859-017-1588-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 03/09/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The rapid progress of high-throughput DNA sequencing techniques has dramatically reduced the costs of whole genome sequencing, which leads to revolutionary advances in gene industry. The explosively increasing volume of raw data outpaces the decreasing disk cost and the storage of huge sequencing data has become a bottleneck of downstream analyses. Data compression is considered as a solution to reduce the dependency on storage. Efficient sequencing data compression methods are highly demanded. RESULTS In this article, we present a lossless reference-based compression method namely LW-FQZip 2 targeted at FASTQ files. LW-FQZip 2 is improved from LW-FQZip 1 by introducing more efficient coding scheme and parallelism. Particularly, LW-FQZip 2 is equipped with a light-weight mapping model, bitwise prediction by partial matching model, arithmetic coding, and multi-threading parallelism. LW-FQZip 2 is evaluated on both short-read and long-read data generated from various sequencing platforms. The experimental results show that LW-FQZip 2 is able to obtain promising compression ratios at reasonable time and memory space costs. CONCLUSIONS The competence enables LW-FQZip 2 to serve as a candidate tool for archival or space-sensitive applications of high-throughput DNA sequencing data. LW-FQZip 2 is freely available at http://csse.szu.edu.cn/staff/zhuzx/LWFQZip2 and https://github.com/Zhuzxlab/LW-FQZip2 .
Collapse
Affiliation(s)
- Zhi-An Huang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Zhenkun Wen
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Qingjin Deng
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Ying Chu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Yiwen Sun
- School of Medicine, Shenzhen University, Shenzhen, 518060 China
| | - Zexuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
20
|
Holley G, Wittler R, Stoye J, Hach F. Dynamic Alignment-Free and Reference-Free Read Compression. LECTURE NOTES IN COMPUTER SCIENCE 2017. [DOI: 10.1007/978-3-319-56970-3_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Comparison of high-throughput sequencing data compression tools. Nat Methods 2016; 13:1005-1008. [PMID: 27776113 DOI: 10.1038/nmeth.4037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/01/2016] [Indexed: 12/27/2022]
Abstract
High-throughput sequencing (HTS) data are commonly stored as raw sequencing reads in FASTQ format or as reads mapped to a reference, in SAM format, both with large memory footprints. Worldwide growth of HTS data has prompted the development of compression methods that aim to significantly reduce HTS data size. Here we report on a benchmarking study of available compression methods on a comprehensive set of HTS data using an automated framework.
Collapse
|
22
|
Berger B, Daniels NM, Yu YW. Computational Biology in the 21st Century: Scaling with Compressive Algorithms. COMMUNICATIONS OF THE ACM 2016; 59:72-80. [PMID: 28966343 PMCID: PMC5615407 DOI: 10.1145/2957324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Algorithmic advances take advantage of the structure of massive biological data landscape.
Collapse
Affiliation(s)
- Bonnie Berger
- Department of Mathematics and EECS at Massachusetts Institute of Technology, Cambridge, MA
| | - Noah M Daniels
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
| | - Y William Yu
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
23
|
Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G. Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph. BMC Bioinformatics 2015; 16:288. [PMID: 26370285 PMCID: PMC4570262 DOI: 10.1186/s12859-015-0709-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Data volumes generated by next-generation sequencing (NGS) technologies is now a major concern for both data storage and transmission. This triggered the need for more efficient methods than general purpose compression tools, such as the widely used gzip method. RESULTS We present a novel reference-free method meant to compress data issued from high throughput sequencing technologies. Our approach, implemented in the software LEON, employs techniques derived from existing assembly principles. The method is based on a reference probabilistic de Bruijn Graph, built de novo from the set of reads and stored in a Bloom filter. Each read is encoded as a path in this graph, by memorizing an anchoring kmer and a list of bifurcations. The same probabilistic de Bruijn Graph is used to perform a lossy transformation of the quality scores, which allows to obtain higher compression rates without losing pertinent information for downstream analyses. CONCLUSIONS LEON was run on various real sequencing datasets (whole genome, exome, RNA-seq or metagenomics). In all cases, LEON showed higher overall compression ratios than state-of-the-art compression software. On a C. elegans whole genome sequencing dataset, LEON divided the original file size by more than 20. LEON is an open source software, distributed under GNU affero GPL License, available for download at http://gatb.inria.fr/software/leon/.
Collapse
Affiliation(s)
- Gaëtan Benoit
- INRIA/IRISA/GenScale, Campus de Beaulieu, Rennes, 35042, France.
| | - Claire Lemaitre
- INRIA/IRISA/GenScale, Campus de Beaulieu, Rennes, 35042, France.
| | | | - Erwan Drezen
- INRIA/IRISA/GenScale, Campus de Beaulieu, Rennes, 35042, France.
| | - Thibault Dayris
- University of Bordeaux, CNRS/LaBRI, Talence, F-33405, France.
| | - Raluca Uricaru
- University of Bordeaux, CNRS/LaBRI, Talence, F-33405, France.
- University of Bordeaux, CBiB, Bordeaux, F-33000, France.
| | - Guillaume Rizk
- INRIA/IRISA/GenScale, Campus de Beaulieu, Rennes, 35042, France.
| |
Collapse
|