1
|
Abstract
Macromolecular complexes play a key role in cellular function. Predicting the structure and dynamics of these complexes is one of the key challenges in structural biology. Docking applications have traditionally been used to predict pairwise interactions between proteins. However, few methods exist for modeling multi-protein assemblies. Here we present two methods, CombDock and DockStar, that can predict multi-protein assemblies starting from subunit structural models. CombDock can assemble subunits without any assumptions about the pairwise interactions between subunits, while DockStar relies on the interaction graph or, alternatively, a homology model or a cryo-electron microscopy (EM) density map of the entire complex. We demonstrate the two methods using RNA polymerase II with 12 subunits and TRiC/CCT chaperonin with 16 subunits.
Collapse
Affiliation(s)
- Dina Schneidman-Duhovny
- School of Computer Science and Engineering and the Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haim J Wolfson
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Furmanova K, Jurcik A, Kozlikova B, Hauser H, Byska J. Multiscale Visual Drilldown for the Analysis of Large Ensembles of Multi-Body Protein Complexes. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:843-852. [PMID: 31425101 DOI: 10.1109/tvcg.2019.2934333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
When studying multi-body protein complexes, biochemists use computational tools that can suggest hundreds or thousands of their possible spatial configurations. However, it is not feasible to experimentally verify more than only a very small subset of them. In this paper, we propose a novel multiscale visual drilldown approach that was designed in tight collaboration with proteomic experts, enabling a systematic exploration of the configuration space. Our approach takes advantage of the hierarchical structure of the data - from the whole ensemble of protein complex configurations to the individual configurations, their contact interfaces, and the interacting amino acids. Our new solution is based on interactively linked 2D and 3D views for individual hierarchy levels. At each level, we offer a set of selection and filtering operations that enable the user to narrow down the number of configurations that need to be manually scrutinized. Furthermore, we offer a dedicated filter interface, which provides the users with an overview of the applied filtering operations and enables them to examine their impact on the explored ensemble. This way, we maintain the history of the exploration process and thus enable the user to return to an earlier point of the exploration. We demonstrate the effectiveness of our approach on two case studies conducted by collaborating proteomic experts.
Collapse
|
3
|
Popov P, Grudinin S, Kurdiuk A, Buslaev P, Redon S. Controlled-advancement rigid-body optimization of nanosystems. J Comput Chem 2019; 40:2391-2399. [PMID: 31254466 DOI: 10.1002/jcc.26016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 11/11/2022]
Abstract
In this study, we propose a novel optimization algorithm, with application to the refinement of molecular complexes. Particularly, we consider optimization problem as the calculation of quasi-static trajectories of rigid bodies influenced by the inverse-inertia-weighted energy gradient and introduce the concept of advancement region that guarantees displacement of a molecule strictly within a relevant region of conformational space. The advancement region helps to avoid typical energy minimization pitfalls, thus, the algorithm is suitable to work with arbitrary energy functions and arbitrary types of molecular complexes without necessary tuning of its hyper-parameters. Our method, called controlled-advancement rigid-body optimization of nanosystems (Carbon), is particularly useful for the large-scale molecular refinement, as for example, the putative binding candidates obtained with protein-protein docking pipelines. Implementation of Carbon with user-friendly interface is available in the SAMSON platform for molecular modeling at https://www.samson-connect.net. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Petr Popov
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sergei Grudinin
- CNRS, Grenoble INP, LJK, University Grenoble Alpes, Inria, 38000, Grenoble, France
| | - Andrii Kurdiuk
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Pavel Buslaev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stephane Redon
- CNRS, Grenoble INP, LJK, University Grenoble Alpes, Inria, 38000, Grenoble, France
| |
Collapse
|
4
|
Peterson LX, Togawa Y, Esquivel-Rodriguez J, Terashi G, Christoffer C, Roy A, Shin WH, Kihara D. Modeling the assembly order of multimeric heteroprotein complexes. PLoS Comput Biol 2018; 14:e1005937. [PMID: 29329283 PMCID: PMC5785014 DOI: 10.1371/journal.pcbi.1005937] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/25/2018] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Protein-protein interactions are the cornerstone of numerous biological processes. Although an increasing number of protein complex structures have been determined using experimental methods, relatively fewer studies have been performed to determine the assembly order of complexes. In addition to the insights into the molecular mechanisms of biological function provided by the structure of a complex, knowing the assembly order is important for understanding the process of complex formation. Assembly order is also practically useful for constructing subcomplexes as a step toward solving the entire complex experimentally, designing artificial protein complexes, and developing drugs that interrupt a critical step in the complex assembly. There are several experimental methods for determining the assembly order of complexes; however, these techniques are resource-intensive. Here, we present a computational method that predicts the assembly order of protein complexes by building the complex structure. The method, named Path-LzerD, uses a multimeric protein docking algorithm that assembles a protein complex structure from individual subunit structures and predicts assembly order by observing the simulated assembly process of the complex. Benchmarked on a dataset of complexes with experimental evidence of assembly order, Path-LZerD was successful in predicting the assembly pathway for the majority of the cases. Moreover, when compared with a simple approach that infers the assembly path from the buried surface area of subunits in the native complex, Path-LZerD has the strong advantage that it can be used for cases where the complex structure is not known. The path prediction accuracy decreased when starting from unbound monomers, particularly for larger complexes of five or more subunits, for which only a part of the assembly path was correctly identified. As the first method of its kind, Path-LZerD opens a new area of computational protein structure modeling and will be an indispensable approach for studying protein complexes.
Collapse
Affiliation(s)
- Lenna X. Peterson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Yoichiro Togawa
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Juan Esquivel-Rodriguez
- Department of Computer Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, Indiana, United States of America
| | - Amitava Roy
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, NIAID, National Institutes of Health, Hamilton, Montana, United States of America
| | - Woong-Hee Shin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Computer Science, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep 2017; 7:10480. [PMID: 28874689 PMCID: PMC5585393 DOI: 10.1038/s41598-017-09654-8] [Citation(s) in RCA: 543] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023] Open
Abstract
Cellular processes often depend on interactions between proteins and the formation of macromolecular complexes. The impairment of such interactions can lead to deregulation of pathways resulting in disease states, and it is hence crucial to gain insights into the nature of macromolecular assemblies. Detailed structural knowledge about complexes and protein-protein interactions is growing, but experimentally determined three-dimensional multimeric assemblies are outnumbered by complexes supported by non-structural experimental evidence. Here, we aim to fill this gap by modeling multimeric structures by homology, only using amino acid sequences to infer the stoichiometry and the overall structure of the assembly. We ask which properties of proteins within a family can assist in the prediction of correct quaternary structure. Specifically, we introduce a description of protein-protein interface conservation as a function of evolutionary distance to reduce the noise in deep multiple sequence alignments. We also define a distance measure to structurally compare homologous multimeric protein complexes. This allows us to hierarchically cluster protein structures and quantify the diversity of alternative biological assemblies known today. We find that a combination of conservation scores, structural clustering, and classical interface descriptors, can improve the selection of homologous protein templates leading to reliable models of protein complexes.
Collapse
Affiliation(s)
- Martino Bertoni
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland.,Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Florian Kiefer
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland.,Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Marco Biasini
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland.,Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Lorenza Bordoli
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland.,Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Torsten Schwede
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland. .,Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland.
| |
Collapse
|
6
|
Hoffmann A, Perrier V, Grudinin S. A novel fast Fourier transform accelerated off-grid exhaustive search method for cryo-electron microscopy fitting. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717008172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This paper presents a novel fast Fourier transform (FFT)-based exhaustive search method extended to off-grid translational and rotational degrees of freedom. The method combines the advantages of the FFT-based exhaustive search, which samples all the conformations of a system under study on a grid, with a local optimization technique that guarantees to find the nearest optimal off-grid conformation. The method is demonstrated on a fitting problem and can be readily applied to a docking problem. The algorithm first samples a scoring function on a six-dimensional grid of sizeN6using the FFT. This operation has an asymptotic complexity ofO(N6logN). Then, the method performs the off-grid search using a local quadratic approximation of the cost function and the trust-region optimization algorithm. The computation of the quadratic approximation is also accelerated by FFT at the same additional asymptotic cost ofO(N6logN). The method is demonstrated by fitting atomic protein models into several simulated and experimental maps from cryo-electron microscopy. The method is available at https://team.inria.fr/nano-d/software/offgridfit.
Collapse
|
7
|
Cazals F, Dreyfus T. The structural bioinformatics library: modeling in biomolecular science and beyond. Bioinformatics 2017; 33:997-1004. [DOI: 10.1093/bioinformatics/btw752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/22/2016] [Indexed: 11/14/2022] Open
|
8
|
Segura J, Sanchez-Garcia R, Tabas-Madrid D, Cuenca-Alba J, Sorzano COS, Carazo JM. 3DIANA: 3D Domain Interaction Analysis: A Toolbox for Quaternary Structure Modeling. Biophys J 2016; 110:766-75. [PMID: 26772592 PMCID: PMC4775853 DOI: 10.1016/j.bpj.2015.11.3519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Electron microscopy (EM) is experiencing a revolution with the advent of a new generation of Direct Electron Detectors, enabling a broad range of large and flexible structures to be resolved well below 1 nm resolution. Although EM techniques are evolving to the point of directly obtaining structural data at near-atomic resolution, for many molecules the attainable resolution might not be enough to propose high-resolution structural models. However, accessing information on atomic coordinates is a necessary step toward a deeper understanding of the molecular mechanisms that allow proteins to perform specific tasks. For that reason, methods for the integration of EM three-dimensional maps with x-ray and NMR structural data are being developed, a modeling task that is normally referred to as fitting, resulting in the so called hybrid models. In this work, we present a novel application—3DIANA—specially targeted to those cases in which the EM map resolution is medium or low and additional experimental structural information is scarce or even lacking. In this way, 3DIANA statistically evaluates proposed/potential contacts between protein domains, presents a complete catalog of both structurally resolved and predicted interacting regions involving these domains and, finally, suggests structural templates to model the interaction between them. The evaluation of the proposed interactions is computed with DIMERO, a new method that scores physical binding sites based on the topology of protein interaction networks, which has recently shown the capability to increase by 200% the number of domain-domain interactions predicted in interactomes as compared to previous approaches. The new application displays the information at a sequence and structural level and is accessible through a web browser or as a Chimera plugin at http://3diana.cnb.csic.es.
Collapse
Affiliation(s)
- Joan Segura
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain.
| | - Ruben Sanchez-Garcia
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Daniel Tabas-Madrid
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Jesus Cuenca-Alba
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Carlos Oscar S Sorzano
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| | - Jose Maria Carazo
- GN7, Spanish National Institute for Bioinformatics (INB) and Biocomputing Unit, National Center of Biotechnology (CSIC)/Instruct Image Processing Center, Madrid, Spain
| |
Collapse
|
9
|
Pandurangan AP, Vasishtan D, Alber F, Topf M. γ-TEMPy: Simultaneous Fitting of Components in 3D-EM Maps of Their Assembly Using a Genetic Algorithm. Structure 2015; 23:2365-2376. [PMID: 26655474 PMCID: PMC4671957 DOI: 10.1016/j.str.2015.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 12/02/2022]
Abstract
We have developed a genetic algorithm for building macromolecular complexes using only a 3D-electron microscopy density map and the atomic structures of the relevant components. For efficient sampling the method uses map feature points calculated by vector quantization. The fitness function combines a mutual information score that quantifies the goodness of fit with a penalty score that helps to avoid clashes between components. Testing the method on ten assemblies (containing 3–8 protein components) and simulated density maps at 10, 15, and 20 Å resolution resulted in identification of the correct topology in 90%, 70%, and 60% of the cases, respectively. We further tested it on four assemblies with experimental maps at 7.2–23.5 Å resolution, showing the ability of the method to identify the correct topology in all cases. We have also demonstrated the importance of the map feature-point quality on assembly fitting in the lack of additional experimental information. γ-TEMPy uses a genetic algorithm to fit multiple components into 3D-EM density maps The fitness score is a combination of a Mutual Information score and a clash penalty Efficient sampling is aided by using map feature points from vector quantization Native topologies for assemblies containing up to eight components can be predicted
Collapse
Affiliation(s)
- Arun Prasad Pandurangan
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Daven Vasishtan
- Division of Structural Biology, Oxford Particle Imaging Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Frank Alber
- Program in Molecular and Computational Biology, University of Southern California, 1050 Childs Way, RRI413E, Los Angeles, CA 90089, USA
| | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|