1
|
Nishimura M, Fujii T, Tanaka H, Maehara K, Morishima K, Shimizu M, Kobayashi Y, Nozawa K, Takizawa Y, Sugiyama M, Ohkawa Y, Kurumizaka H. Genome-wide mapping and cryo-EM structural analyses of the overlapping tri-nucleosome composed of hexasome-hexasome-octasome moieties. Commun Biol 2024; 7:61. [PMID: 38191828 PMCID: PMC10774305 DOI: 10.1038/s42003-023-05694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The nucleosome is a fundamental unit of chromatin in which about 150 base pairs of DNA are wrapped around a histone octamer. The overlapping di-nucleosome has been proposed as a product of chromatin remodeling around the transcription start site, and previously found as a chromatin unit, in which about 250 base pairs of DNA continuously bind to the histone core composed of a hexamer and an octamer. In the present study, our genome-wide analysis of human cells suggests another higher nucleosome stacking structure, the overlapping tri-nucleosome, which wraps about 300-350 base-pairs of DNA in the region downstream of certain transcription start sites of actively transcribed genes. We determine the cryo-electron microscopy (cryo-EM) structure of the overlapping tri-nucleosome, in which three subnucleosome moieties, hexasome, hexasome, and octasome, are associated by short connecting DNA segments. Small angle X-ray scattering and coarse-grained molecular dynamics simulation analyses reveal that the cryo-EM structure of the overlapping tri-nucleosome may reflect its structure in solution. Our findings suggest that nucleosome stacking structures composed of hexasome and octasome moieties may be formed by nucleosome remodeling factors around transcription start sites for gene regulation.
Collapse
Affiliation(s)
- Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, 111 TW, Alexander Drive, Research Triangle Park, NC, 27707, USA
| | - Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yuki Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
2
|
Maehara K, Tomimatsu K, Harada A, Tanaka K, Sato S, Fukuoka M, Okada S, Handa T, Kurumizaka H, Saitoh N, Kimura H, Ohkawa Y. Modeling population size independent tissue epigenomes by ChIL-seq with single thin sections. Mol Syst Biol 2021; 17:e10323. [PMID: 34730297 PMCID: PMC8564819 DOI: 10.15252/msb.202110323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Recent advances in genome-wide technologies have enabled analyses using small cell numbers of even single cells. However, obtaining tissue epigenomes with cell-type resolution from large organs and tissues still remains challenging, especially when the available material is limited. Here, we present a ChIL-based approach for analyzing the diverse cellular dynamics at the tissue level using high-depth epigenomic data. "ChIL for tissues" allows the analysis of a single tissue section and can reproducibly generate epigenomic profiles from several tissue types, based on the distribution of target epigenomic states, tissue morphology, and number of cells. The proposed method enabled the independent evaluation of changes in cell populations and gene activation in cells from regenerating skeletal muscle tissues, using a statistical model of RNA polymerase II distribution on gene loci. Thus, the integrative analyses performed using ChIL can elucidate in vivo cell-type dynamics of tissues.
Collapse
Affiliation(s)
- Kazumitsu Maehara
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kosuke Tomimatsu
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Akihito Harada
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Kaori Tanaka
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Shoko Sato
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Megumi Fukuoka
- Division of Cancer BiologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Seiji Okada
- Division of PathophysiologyMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Tetsuya Handa
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoTokyoJapan
| | - Noriko Saitoh
- Division of Cancer BiologyThe Cancer Institute of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Hiroshi Kimura
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Yasuyuki Ohkawa
- Division of TranscriptomicsMedical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
3
|
Kurihara M, Kato K, Sanbo C, Shigenobu S, Ohkawa Y, Fuchigami T, Miyanari Y. Genomic Profiling by ALaP-Seq Reveals Transcriptional Regulation by PML Bodies through DNMT3A Exclusion. Mol Cell 2020; 78:493-505.e8. [PMID: 32353257 DOI: 10.1016/j.molcel.2020.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 04/02/2020] [Indexed: 12/22/2022]
Abstract
The promyelocytic leukemia (PML) body is a phase-separated nuclear structure physically associated with chromatin, implying its crucial roles in genome functions. However, its role in transcriptional regulation is largely unknown. We developed APEX-mediated chromatin labeling and purification (ALaP) to identify the genomic regions proximal to PML bodies. We found that PML bodies associate with active regulatory regions across the genome and with ∼300 kb of the short arm of the Y chromosome (YS300) in mouse embryonic stem cells. The PML body association with YS300 is essential for the transcriptional activity of the neighboring Y-linked clustered genes. Mechanistically, PML bodies provide specific nuclear spaces that the de novo DNA methyltransferase DNMT3A cannot access, resulting in the steady maintenance of a hypo-methylated state at Y-linked gene promoters. Our study underscores a new mechanism for gene regulation in the 3D nuclear space and provides insights into the functional properties of nuclear structures for genome function.
Collapse
Affiliation(s)
- Misuzu Kurihara
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan
| | - Kagayaki Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan; Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan
| | - Chiaki Sanbo
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI, Hayama, 240-0193, Japan
| | - Yasuyuki Ohkawa
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-0054, Japan
| | - Takeshi Fuchigami
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Yusuke Miyanari
- Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8787, Japan; National Institute for Basic Biology (NIBB), Okazaki, 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI, Hayama, 240-0193, Japan.
| |
Collapse
|
4
|
Yuan J, Kensler KH, Hu Z, Zhang Y, Zhang T, Jiang J, Xu M, Pan Y, Long M, Montone KT, Tanyi JL, Fan Y, Zhang R, Hu X, Rebbeck TR, Zhang L. Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genet 2020; 16:e1008641. [PMID: 32059012 PMCID: PMC7046294 DOI: 10.1371/journal.pgen.1008641] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/27/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Men of predominantly African Ancestry (AA) have higher prostate cancer (CaP) incidence and worse survival than men of predominantly European Ancestry (EA). While socioeconomic factors drive this disparity, genomic factors may also contribute to differences in the incidence and mortality rates. To compare the prevalence of prostate tumor genomic alterations and transcriptomic profiles by patient genetic ancestry, we evaluated genomic profiles from The Cancer Genome Atlas (TCGA) CaP cohort (n = 498). Patient global and local genetic ancestry were estimated by computational algorithms using genotyping data; 414 (83.1%) were EA, 61 (12.2%) were AA, 11 (2.2%) were East Asian Ancestry (EAA), 10 (2.0%) were Native American (NA), and 2 (0.4%) were other ancestry. Genetic ancestry was highly concordant with self-identified race/ethnicity. Subsequent analyses were limited to 61 AA and 414 EA cases. Significant differences were observed by ancestry in the frequency of SPOP mutations (20.3% AA vs. 10.0% EA; p = 5.6×10-03), TMPRSS2-ERG fusions (29.3% AA vs. 39.6% EA; p = 4.4×10-02), and PTEN deletions/losses (11.5% AA vs. 30.2% EA; p = 3.5×10-03). Differentially expressed genes (DEGs) between AAs and EAs showed significant enrichment for prostate eQTL target genes (p = 8.09×10-48). Enrichment of highly expressed DEGs for immune-related pathways was observed in AAs, and for PTEN/PI3K signaling in EAs. Nearly one-third of DEGs (31.3%) were long non-coding RNAs (DE-lncRNAs). The proportion of DE-lncRNAs with higher expression in AAs greatly exceeded that with lower expression in AAs (p = 1.2×10-125). Both ChIP-seq and RNA-seq data suggested a stronger regulatory role for AR signaling pathways in DE-lncRNAs vs. non-DE-lncRNAs. CaP-related oncogenic lncRNAs, such as PVT1, PCAT1 and PCAT10/CTBP1-AS, were found to be more highly expressed in AAs. We report substantial heterogeneity in the prostate tumor genome and transcriptome between EA and AA. These differences may be biological contributors to racial disparities in CaP incidence and outcomes.
Collapse
Affiliation(s)
- Jiao Yuan
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kevin H. Kensler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Zhongyi Hu
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Youyou Zhang
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Tianli Zhang
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Junjie Jiang
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mu Xu
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yutian Pan
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Meixiao Long
- Department of Internal Medicine, Division of Hematology, Ohio State University, Columbus, Ohio, United States of America
| | - Kathleen T. Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Janos L. Tanyi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rugang Zhang
- Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Xiaowen Hu
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Timothy R. Rebbeck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lin Zhang
- Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Sugimoto N, Maehara K, Yoshida K, Ohkawa Y, Fujita M. Genome-wide analysis of the spatiotemporal regulation of firing and dormant replication origins in human cells. Nucleic Acids Res 2019; 46:6683-6696. [PMID: 29893900 PMCID: PMC6061783 DOI: 10.1093/nar/gky476] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022] Open
Abstract
In metazoan cells, only a limited number of mini chromosome maintenance (MCM) complexes are fired during S phase, while the majority remain dormant. Several methods have been used to map replication origins, but such methods cannot identify dormant origins. Herein, we determined MCM7-binding sites in human cells using ChIP-Seq, classified them into firing and dormant origins using origin data and analysed their association with various chromatin signatures. Firing origins, but not dormant origins, were well correlated with open chromatin regions and were enriched upstream of transcription start sites (TSSs) of transcribed genes. Aggregation plots of MCM7 signals revealed minimal difference in the efficacy of MCM loading between firing and dormant origins. We also analysed common fragile sites (CFSs) and found a low density of origins at these sites. Nevertheless, firing origins were enriched upstream of the TSSs. Based on the results, we propose a model in which excessive MCMs are actively loaded in a genome-wide manner, irrespective of chromatin status, but only a fraction are passively fired in chromatin areas with an accessible open structure, such as regions upstream of TSSs of transcribed genes. This plasticity in the specification of replication origins may minimize collisions between replication and transcription.
Collapse
Affiliation(s)
- Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Rey-Iglesia A, Gopalakrishan S, Carøe C, Alquezar-Planas DE, Ahlmann Nielsen A, Röder T, Bruhn Pedersen L, Naesborg-Nielsen C, Sinding MHS, Fredensborg Rath M, Li Z, Petersen B, Gilbert MTP, Bunce M, Mourier T, Hansen AJ. MobiSeq: De novo SNP discovery in model and non-model species through sequencing the flanking region of transposable elements. Mol Ecol Resour 2019; 19:512-525. [PMID: 30575257 DOI: 10.1111/1755-0998.12984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome-scale studies to characterize both model and non-model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome-wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site-associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms-enabling the exploration of diverse evolutionary and conservation questions.
Collapse
Affiliation(s)
- Alba Rey-Iglesia
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishan
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Christian Carøe
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - David E Alquezar-Planas
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Anne Ahlmann Nielsen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Timo Röder
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Lene Bruhn Pedersen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | | - Mikkel-Holger S Sinding
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Greenland Institute of Natural Resources, Nuuk, Greenland
| | | | - Zhipeng Li
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bent Petersen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,Faculty of Applied Sciences, Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Kedah, Malaysia
| | - M Thomas P Gilbert
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Norwegian University of Science and Technology, University Museum, Trondheim, Norway
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Tobias Mourier
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.,Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | |
Collapse
|
7
|
Harada A, Maehara K, Handa T, Arimura Y, Nogami J, Hayashi-Takanaka Y, Shirahige K, Kurumizaka H, Kimura H, Ohkawa Y. A chromatin integration labelling method enables epigenomic profiling with lower input. Nat Cell Biol 2018; 21:287-296. [DOI: 10.1038/s41556-018-0248-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022]
|
8
|
Semba Y, Harada A, Maehara K, Oki S, Meno C, Ueda J, Yamagata K, Suzuki A, Onimaru M, Nogami J, Okada S, Akashi K, Ohkawa Y. Chd2 regulates chromatin for proper gene expression toward differentiation in mouse embryonic stem cells. Nucleic Acids Res 2017; 45:8758-8772. [PMID: 28549158 PMCID: PMC5587750 DOI: 10.1093/nar/gkx475] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
Chromatin reorganization is necessary for pluripotent stem cells, including embryonic stem cells (ESCs), to acquire lineage potential. However, it remains unclear how ESCs maintain their characteristic chromatin state for appropriate gene expression upon differentiation. Here, we demonstrate that chromodomain helicase DNA-binding domain 2 (Chd2) is required to maintain the differentiation potential of mouse ESCs. Chd2-depleted ESCs showed suppressed expression of developmentally regulated genes upon differentiation and subsequent differentiation defects without affecting gene expression in the undifferentiated state. Furthermore, chromatin immunoprecipitation followed by sequencing revealed alterations in the nucleosome occupancy of the histone variant H3.3 for developmentally regulated genes in Chd2-depleted ESCs, which in turn led to elevated trimethylation of the histone H3 lysine 27. These results suggest that Chd2 is essential in preventing suppressive chromatin formation for developmentally regulated genes and determines subsequent effects on developmental processes in the undifferentiated state.
Collapse
Affiliation(s)
- Yuichiro Semba
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinya Oki
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jun Ueda
- Center of Education in Laboratory Animal Research, Chubu University, Aichi 487-8501, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, KINDAI University, Wakayama 649-6493, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mitsuho Onimaru
- Pathophysiological and Experimental Pathology, Department of Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Seiji Okada
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Chandran A, Syed J, Taylor RD, Kashiwazaki G, Sato S, Hashiya K, Bando T, Sugiyama H. Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing. Nucleic Acids Res 2016; 44:4014-24. [PMID: 27098039 PMCID: PMC4872120 DOI: 10.1093/nar/gkw283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 04/05/2016] [Indexed: 12/17/2022] Open
Abstract
Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2: showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing.
Collapse
Affiliation(s)
- Anandhakumar Chandran
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Junetha Syed
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Rhys D Taylor
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Materials Science (iCeMS) Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University, Sakyo, Kyoto 606-8502, Japan Institute for Integrated Cell-Materials Science (iCeMS) Kyoto University, Sakyo, Kyoto 606-8502, Japan CREST, Japan Science and Technology Corporation (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
10
|
Exploration of nucleosome positioning patterns in transcription factor function. Sci Rep 2016; 6:19620. [PMID: 26790608 PMCID: PMC4726364 DOI: 10.1038/srep19620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 12/14/2015] [Indexed: 12/24/2022] Open
Abstract
The binding of transcription factors (TFs) triggers activation of specific chromatin regions through the recruitment and activation of RNA polymerase. Unique nucleosome positioning (NP) occurs during gene expression and has been suggested to be involved in various other chromatin functions. However, the diversity of NP that can occur for each function has not been clarified. Here we used MNase-Seq data to evaluate NP around 258 cis-regulatory elements in the mouse genome. Principal component analysis of the 258 elements revealed that NP consisted of five major patterns. Furthermore, the five NP patterns had predictive power for the level of gene expression. We also demonstrated that selective NP patterns appeared around TF binding sites. These results suggest that the NP patterns are correlated to specific functions on chromatin.
Collapse
|
11
|
Hayashi M, Maehara K, Harada A, Semba Y, Kudo K, Takahashi H, Oki S, Meno C, Ichiyanagi K, Akashi K, Ohkawa Y. Chd5 Regulates MuERV-L/MERVL Expression in Mouse Embryonic Stem Cells Via H3K27me3 Modification and Histone H3.1/H3.2. J Cell Biochem 2015; 117:780-92. [PMID: 26359639 DOI: 10.1002/jcb.25368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 12/12/2022]
Abstract
Chd5 is an essential factor for neuronal differentiation and spermatogenesis and is a known tumor suppressor. H3K27me3 and H3K4un are modifications recognized by Chd5; however, it remains unclear how Chd5 remodels chromatin structure. We completely disrupted the Chd5 locus using the CRISPR-Cas9 system to generate a 52 kbp long deletion and analyzed Chd5 function in mouse embryonic stem cells. Our findings show that Chd5 represses murine endogenous retrovirus-L (MuERV-L/MERVL), an endogenous retrovirus-derived retrotransposon, by regulating H3K27me3 and H3.1/H3.2 function.
Collapse
Affiliation(s)
- Masayasu Hayashi
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.,Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Akihito Harada
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuichiro Semba
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.,Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kensuke Kudo
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Hokkaido 060-8638, Japan
| | - Shinya Oki
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Ichiyanagi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|