1
|
A Lévy Distribution Based Searching Scheme for the Discrete Targets in Vast Region. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper investigates the Discrete Targets Search Problem, (DTSP), which aims to quickly search for discrete objects scattered in a vast symmetry region. Different from continuous function extremal value search, the discrete points search cannot make use of the properties of regular functions, such as function analytic, single/multiple extreme, and monotonicity. Thus, in this paper a new search scheme based on Lévy random distribution is investigated. In comparison with the TraditionalCarpet search or Random search based on other distributions, DTSP can provide much faster search speed which is demonstrated by simulation with different scales problems for the selected scenarios. The simulations experiment proves that DTSP is faster for searching for a discrete single target or multiple targets in a wide area. It provides a new method for solving the discrete target search problem.
Collapse
|
2
|
Huang Y, Xie Y, Zhong C, Zhou F. Finding branched pathways in metabolic network via atom group tracking. PLoS Comput Biol 2021; 17:e1008676. [PMID: 33529200 PMCID: PMC7880430 DOI: 10.1371/journal.pcbi.1008676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/12/2021] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Finding non-standard or new metabolic pathways has important applications in metabolic engineering, synthetic biology and the analysis and reconstruction of metabolic networks. Branched metabolic pathways dominate in metabolic networks and depict a more comprehensive picture of metabolism compared to linear pathways. Although progress has been developed to find branched metabolic pathways, few efforts have been made in identifying branched metabolic pathways via atom group tracking. In this paper, we present a pathfinding method called BPFinder for finding branched metabolic pathways by atom group tracking, which aims to guide the synthetic design of metabolic pathways. BPFinder enumerates linear metabolic pathways by tracking the movements of atom groups in metabolic network and merges the linear atom group conserving pathways into branched pathways. Two merging rules based on the structure of conserved atom groups are proposed to accurately merge the branched compounds of linear pathways to identify branched pathways. Furthermore, the integrated information of compound similarity, thermodynamic feasibility and conserved atom groups is also used to rank the pathfinding results for feasible branched pathways. Experimental results show that BPFinder is more capable of recovering known branched metabolic pathways as compared to other existing methods, and is able to return biologically relevant branched pathways and discover alternative branched pathways of biochemical interest. The online server of BPFinder is available at http://114.215.129.245:8080/atomic/. The program, source code and data can be downloaded from https://github.com/hyr0771/BPFinder. Computational search of branched metabolic pathways is a fundamental problem in metabolic engineering and metabolic network analysis, which provides a systematic way of understanding the metabolism and discovering alternative pathways for synthesis of useful biomolecules. We propose BPFinder, a novel computational approach to identify branched metabolic pathways via atom group tracking. Different from other pathfinding methods using atom tracking, BPFinder tracks the movement of atom groups in metabolic network to find linear atom group conserving pathways, and merge the found linear pathways by the selected branched compounds to generate branched pathways. Based on the structure of conserved atom groups in branched compounds, we design two merging rules for branched compounds: overlapping rule and non-overlapping rule. The user can flexibly adopt these rules to accurately find the branched pathways that contain overlapping/non-overlapping conserved atom groups. BPFinder also enables the user to combine the information of compound similarity, Gibbs free energy of reactions, and conserved atom groups to sort resulting pathways. Compared with other existing methods, BPFinder can more accurately recover the known branched pathways. The alternative branched pathways returned by BPFinder reveal that the user can flexibly utilize our proposed merging rules to discover biochemically meaningful pathways of interest.
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer and Electronics and Information, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
- * E-mail:
| | - Yusi Xie
- School of Computer and Electronics and Information, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| | - Cheng Zhong
- School of Computer and Electronics and Information, Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| | - Fengfeng Zhou
- College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
3
|
Otero-Muras I, Carbonell P. Automated engineering of synthetic metabolic pathways for efficient biomanufacturing. Metab Eng 2020; 63:61-80. [PMID: 33316374 DOI: 10.1016/j.ymben.2020.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022]
Abstract
Metabolic engineering involves the engineering and optimization of processes from single-cell to fermentation in order to increase production of valuable chemicals for health, food, energy, materials and others. A systems approach to metabolic engineering has gained traction in recent years thanks to advances in strain engineering, leading to an accelerated scaling from rapid prototyping to industrial production. Metabolic engineering is nowadays on track towards a truly manufacturing technology, with reduced times from conception to production enabled by automated protocols for DNA assembly of metabolic pathways in engineered producer strains. In this review, we discuss how the success of the metabolic engineering pipeline often relies on retrobiosynthetic protocols able to identify promising production routes and dynamic regulation strategies through automated biodesign algorithms, which are subsequently assembled as embedded integrated genetic circuits in the host strain. Those approaches are orchestrated by an experimental design strategy that provides optimal scheduling planning of the DNA assembly, rapid prototyping and, ultimately, brings forward an accelerated Design-Build-Test-Learn cycle and the overall optimization of the biomanufacturing process. Achieving such a vision will address the increasingly compelling demand in our society for delivering valuable biomolecules in an affordable, inclusive and sustainable bioeconomy.
Collapse
Affiliation(s)
- Irene Otero-Muras
- BioProcess Engineering Group, IIM-CSIC, Spanish National Research Council, Vigo, 36208, Spain.
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (ai2), Universitat Politècnica de València, 46022, Spain.
| |
Collapse
|
4
|
Baranwal M, Magner A, Elvati P, Saldinger J, Violi A, Hero AO. A deep learning architecture for metabolic pathway prediction. Bioinformatics 2020; 36:2547-2553. [PMID: 31879763 DOI: 10.1093/bioinformatics/btz954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 01/14/2023] Open
Abstract
MOTIVATION Understanding the mechanisms and structural mappings between molecules and pathway classes are critical for design of reaction predictors for synthesizing new molecules. This article studies the problem of prediction of classes of metabolic pathways (series of chemical reactions occurring within a cell) in which a given biochemical compound participates. We apply a hybrid machine learning approach consisting of graph convolutional networks used to extract molecular shape features as input to a random forest classifier. In contrast to previously applied machine learning methods for this problem, our framework automatically extracts relevant shape features directly from input SMILES representations, which are atom-bond specifications of chemical structures composing the molecules. RESULTS Our method is capable of correctly predicting the respective metabolic pathway class of 95.16% of tested compounds, whereas competing methods only achieve an accuracy of 84.92% or less. Furthermore, our framework extends to the task of classification of compounds having mixed membership in multiple pathway classes. Our prediction accuracy for this multi-label task is 97.61%. We analyze the relative importance of various global physicochemical features to the pathway class prediction problem and show that simple linear/logistic regression models can predict the values of these global features from the shape features extracted using our framework. AVAILABILITY AND IMPLEMENTATION https://github.com/baranwa2/MetabolicPathwayPrediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mayank Baranwal
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abram Magner
- Department of Computer Science, University at Albany, SUNY, Albany, NY 12222, USA
| | | | | | - Angela Violi
- Department of Mechanical Engineering.,Department of Chemical Engineering and Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alfred O Hero
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Riaz MR, Preston GM, Mithani A. MAPPS: A Web-Based Tool for Metabolic Pathway Prediction and Network Analysis in the Postgenomic Era. ACS Synth Biol 2020; 9:1069-1082. [PMID: 32347714 DOI: 10.1021/acssynbio.9b00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Comparative and evolutionary analyses of metabolic networks have a wide range of applications, ranging from research into metabolic evolution through to practical applications in drug development, synthetic biology, and biodegradation. We present MAPPS: Metabolic network Analysis and Pathway Prediction Server (https://mapps.lums.edu.pk), a web-based tool to study functions and evolution of metabolic networks using traditional and 'omics data sets. MAPPS provides diverse functionalities including an interactive interface, graphical visualization of results, pathway prediction and network comparison, identification of potential drug targets, in silico metabolic engineering, host-microbe interactions, and ancestral network building. Importantly, MAPPS also allows users to upload custom data, thus enabling metabolic analyses on draft and custom genomes, and has an 'omics pipeline to filter pathway results, making it relevant in today's postgenomic era.
Collapse
Affiliation(s)
- Muhammad Rizwan Riaz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore 54792, Pakistan
| |
Collapse
|
6
|
Metabolic pathways synthesis based on ant colony optimization. Sci Rep 2018; 8:16398. [PMID: 30401873 PMCID: PMC6219534 DOI: 10.1038/s41598-018-34454-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/17/2018] [Indexed: 02/02/2023] Open
Abstract
One of the current challenges in bioinformatics is to discover new ways to transform a set of compounds into specific products. The usual approach is finding the reactions to synthesize a particular product, from a given substrate, by means of classical searching algorithms. However, they have three main limitations: difficulty in handling large amounts of reactions and compounds; absence of a step that verifies the availability of substrates; and inability to find branched pathways. We present here a novel bio-inspired algorithm for synthesizing linear and branched metabolic pathways. It allows relating several compounds simultaneously, ensuring the availability of substrates for every reaction in the solution. Comparisons with classical searching algorithms and other recent metaheuristic approaches show clear advantages of this proposal, fully recovering well-known pathways. Furthermore, solutions found can be analyzed in a simple way through graphical representations on the web.
Collapse
|
7
|
Zhang C, Bidkhori G, Benfeitas R, Lee S, Arif M, Uhlén M, Mardinoglu A. ESS: A Tool for Genome-Scale Quantification of Essentiality Score for Reaction/Genes in Constraint-Based Modeling. Front Physiol 2018; 9:1355. [PMID: 30323767 PMCID: PMC6173058 DOI: 10.3389/fphys.2018.01355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/07/2018] [Indexed: 11/17/2022] Open
Abstract
Genome-scale metabolic models (GEMs) are comprehensive descriptions of cell metabolism and have been extensively used to understand biological responses in health and disease. One such application is in determining metabolic adaptation to the absence of a gene or reaction, i.e., essentiality analysis. However, current methods do not permit efficiently and accurately quantifying reaction/gene essentiality. Here, we present Essentiality Score Simulator (ESS), a tool for quantification of gene/reaction essentialities in GEMs. ESS quantifies and scores essentiality of each reaction/gene and their combinations based on the stoichiometric balance using synthetic lethal analysis. This method provides an option to weight metabolic models which currently rely mostly on topologic parameters, and is potentially useful to investigate the metabolic pathway differences between different organisms, cells, tissues, and/or diseases. We benchmarked the proposed method against multiple network topology parameters, and observed that our method displayed higher accuracy based on experimental evidence. In addition, we demonstrated its application in the wild-type and ldh knock-out E. coli core model, as well as two human cell lines, and revealed the changes of essentiality in metabolic pathways based on the reactions essentiality score. ESS is available without any limitation at https://sourceforge.net/projects/essentiality-score-simulator.
Collapse
Affiliation(s)
- Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Gholamreza Bidkhori
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Rui Benfeitas
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Sunjae Lee
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Jeffryes JG, Seaver SMD, Faria JP, Henry CS. A pathway for every product? Tools to discover and design plant metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:61-70. [PMID: 29907310 DOI: 10.1016/j.plantsci.2018.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The vast diversity of plant natural products is a powerful indication of the biosynthetic capacity of plant metabolism. Synthetic biology seeks to capitalize on this ability by understanding and reconfiguring the biosynthetic pathways that generate this diversity to produce novel products with improved efficiency. Here we review the algorithms and databases that presently support the design and manipulation of metabolic pathways in plants, starting from metabolic models of native biosynthetic pathways, progressing to novel combinations of known reactions, and finally proposing new reactions that may be carried out by existing enzymes. We show how these tools are useful for proposing new pathways as well as identifying side reactions that may affect engineering goals.
Collapse
Affiliation(s)
- James G Jeffryes
- Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, United States
| | - Samuel M D Seaver
- Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, United States
| | - José P Faria
- Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, United States
| | - Christopher S Henry
- Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, United States.
| |
Collapse
|
9
|
Bidkhori G, Benfeitas R, Elmas E, Kararoudi MN, Arif M, Uhlen M, Nielsen J, Mardinoglu A. Metabolic Network-Based Identification and Prioritization of Anticancer Targets Based on Expression Data in Hepatocellular Carcinoma. Front Physiol 2018; 9:916. [PMID: 30065658 PMCID: PMC6056771 DOI: 10.3389/fphys.2018.00916] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly form of liver cancer with high mortality worldwide. Unfortunately, the large heterogeneity of this disease makes it difficult to develop effective treatment strategies. Cellular network analyses have been employed to study heterogeneity in cancer, and to identify potential therapeutic targets. However, the existing approaches do not consider metabolic growth requirements, i.e., biological network functionality, to rank candidate targets while preventing toxicity to non-cancerous tissues. Here, we developed an algorithm to overcome these issues based on integration of gene expression data, genome-scale metabolic models, network controllability, and dispensability, as well as toxicity analysis. This method thus predicts and ranks potential anticancer non-toxic controlling metabolite and gene targets. Our algorithm encompasses both objective-driven and-independent tasks, and uses network topology to finally rank the predicted therapeutic targets. We employed this algorithm to the analysis of transcriptomic data for 50 HCC patients with both cancerous and non-cancerous samples. We identified several potential targets that would prevent cell growth, including 74 anticancer metabolites, and 3 gene targets (PRKACA, PGS1, and CRLS1). The predicted anticancer metabolites showed good agreement with existing FDA-approved cancer drugs, and the 3 genes were experimentally validated by performing experiments in HepG2 and Hep3B liver cancer cell lines. Our observations indicate that our novel approach successfully identifies therapeutic targets for effective treatment of cancer. This approach may also be applied to any cancer type that has tumor and non-tumor gene or protein expression data.
Collapse
Affiliation(s)
- Gholamreza Bidkhori
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Rui Benfeitas
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Ezgi Elmas
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | - Muhammad Arif
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Wang L, Dash S, Ng CY, Maranas CD. A review of computational tools for design and reconstruction of metabolic pathways. Synth Syst Biotechnol 2017; 2:243-252. [PMID: 29552648 PMCID: PMC5851934 DOI: 10.1016/j.synbio.2017.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 11/28/2022] Open
Abstract
Metabolic pathways reflect an organism's chemical repertoire and hence their elucidation and design have been a primary goal in metabolic engineering. Various computational methods have been developed to design novel metabolic pathways while taking into account several prerequisites such as pathway stoichiometry, thermodynamics, host compatibility, and enzyme availability. The choice of the method is often determined by the nature of the metabolites of interest and preferred host organism, along with computational complexity and availability of software tools. In this paper, we review different computational approaches used to design metabolic pathways based on the reaction network representation of the database (i.e., graph or stoichiometric matrix) and the search algorithm (i.e., graph search, flux balance analysis, or retrosynthetic search). We also put forth a systematic workflow that can be implemented in projects requiring pathway design and highlight current limitations and obstacles in computational pathway design.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
11
|
Kim SM, Peña MI, Moll M, Bennett GN, Kavraki LE. A review of parameters and heuristics for guiding metabolic pathfinding. J Cheminform 2017; 9:51. [PMID: 29086092 PMCID: PMC5602787 DOI: 10.1186/s13321-017-0239-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/07/2017] [Indexed: 12/04/2022] Open
Abstract
Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.
Collapse
Affiliation(s)
- Sarah M Kim
- Department of Computer Science, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Matthew I Peña
- Department of BioSciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Mark Moll
- Department of Computer Science, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - George N Bennett
- Department of BioSciences, Rice University, 6100 Main St., Houston, TX, 77005, USA
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, 6100 Main St., Houston, TX, 77005, USA.
| |
Collapse
|
12
|
Huang Y, Zhong C, Lin HX, Wang J. A Method for Finding Metabolic Pathways Using Atomic Group Tracking. PLoS One 2017; 12:e0168725. [PMID: 28068354 PMCID: PMC5221824 DOI: 10.1371/journal.pone.0168725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
- * E-mail: (YH); (CZ)
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
- * E-mail: (YH); (CZ)
| | - Hai Xiang Lin
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Jianyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| |
Collapse
|