1
|
Kiledal EA, Reitz LA, Kuiper EQ, Evans J, Siddiqui R, Denef VJ, Dick GJ. Comparative genomic analysis of Microcystis strain diversity using conserved marker genes. HARMFUL ALGAE 2024; 132:102580. [PMID: 38331539 DOI: 10.1016/j.hal.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Microcystis-dominated cyanobacterial harmful algal blooms (cyanoHABs) have a global impact on freshwater environments, affecting both wildlife and human health. Microcystis diversity and function in field samples and laboratory cultures can be determined by sequencing whole genomes of cultured isolates or natural populations, but these methods remain computationally and financially expensive. Amplicon sequencing of marker genes is a lower cost and higher throughput alternative to characterize strain composition and diversity in mixed samples. However, the selection of appropriate marker gene region(s) and primers requires prior understanding of the relationship between single gene genotype, whole genome content, and phenotype. To identify phylogenetic markers of Microcystis strain diversity, we compared phylogenetic trees built from each of 2,351 individual core genes to an established phylogeny and assessed the ability of these core genes to predict whole genome content and bioactive compound genotypes. We identified single-copy core genes better able to resolve Microcystis phylogenies than previously identified marker genes. We developed primers suitable for current Illumina-based amplicon sequencing with near-complete coverage of available Microcystis genomes and demonstrate that they outperform existing options for assessing Microcystis strain composition. Results showed that genetic markers can be used to infer Microcystis gene content and phenotypes such as potential production of bioactive compounds , although marker performance varies by bioactive compound gene and sequence similarity. Finally, we demonstrate that these markers can be used to characterize the Microcystis strain composition of laboratory or field samples like those collected for surveillance and modeling of Microcystis-dominated cyanobacterial harmful algal blooms.
Collapse
Affiliation(s)
- E Anders Kiledal
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA.
| | - Laura A Reitz
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA
| | - Esmée Q Kuiper
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA
| | - Jacob Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, 2220 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Ruqaiya Siddiqui
- Microbiome Core, University of Michigan, 1500 MSRB 1, 1150W Medical Center Drive, Ann Arbor, MI 48109-5666, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, 2220 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1005, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, 2534 North University Building, 1100 North University Avenue Ave, Rm. 2004, Ann Arbor, MI 48109-1005, USA; Cooperative Institute for Great Lakes Research, University of Michigan, 4040 Dana Building, 440 Church Street, Ann Arbor, MI 48109-1041, USA
| |
Collapse
|
2
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
3
|
De Wolfe TJ, Wright ES. Multi-factorial examination of amplicon sequencing workflows from sample preparation to bioinformatic analysis. BMC Microbiol 2023; 23:107. [PMID: 37076812 PMCID: PMC10114302 DOI: 10.1186/s12866-023-02851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND The development of sequencing technologies to evaluate bacterial microbiota composition has allowed new insights into the importance of microbial ecology. However, the variety of methodologies used among amplicon sequencing workflows leads to uncertainty about best practices as well as reproducibility and replicability among microbiome studies. Using a bacterial mock community composed of 37 soil isolates, we performed a comprehensive methodological evaluation of workflows, each with a different combination of methodological factors spanning sample preparation to bioinformatic analysis to define sources of artifacts that affect coverage, accuracy, and biases in the resulting compositional profiles. RESULTS Of the workflows examined, those using the V4-V4 primer set enabled the highest level of concordance between the original mock community and resulting microbiome sequence composition. Use of a high-fidelity polymerase, or a lower-fidelity polymerase with an increased PCR elongation time, limited chimera formation. Bioinformatic pipelines presented a trade-off between the fraction of distinct community members identified (coverage) and fraction of correct sequences (accuracy). DADA2 and QIIME2 assembled V4-V4 reads amplified by Taq polymerase resulted in the highest accuracy (100%) but had a coverage of only 52%. Using mothur to assemble and denoise V4-V4 reads resulted in a coverage of 75%, albeit with marginally lower accuracy (99.5%). CONCLUSIONS Optimization of microbiome workflows is critical for accuracy and to support reproducibility and replicability among microbiome studies. These considerations will help reveal the guiding principles of microbial ecology and impact the translation of microbiome research to human and environmental health.
Collapse
Affiliation(s)
- Travis J. De Wolfe
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 450 Technology Drive Rm. 426, Pittsburgh, PA 15219 USA
- Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, 4480 Oak Street Rm. 208B, Vancouver, BC V6H 4E4 Canada
- Gut4Health, BC Children’s Hospital Research Institute, University of British Columbia, 950 West 28th Avenue Rm. 211, Vancouver, BC V5Z 4H4 Canada
| | - Erik S. Wright
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 450 Technology Drive Rm. 426, Pittsburgh, PA 15219 USA
| |
Collapse
|
4
|
Short-length Homologous Region exhaustive Search algorithm (SHRS): A primer design algorithm for differentiating bacteria at the species, subspecies, or strain level based on a whole genome sequence. J Microbiol Methods 2022; 203:106605. [PMID: 36341783 DOI: 10.1016/j.mimet.2022.106605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
In fields such as the food industry, it is very important to identify target bacteria at the species level or lower for optimal product quality control. Bacteria identification at the subspecies or lower level requires time-consuming and high-cost analyses such as multi-locus sequence typing and amplified fragment length polymorphism analyses. Herein, we developed a primer design algorithm for precisely identifying bacteria based on a whole genome DNA sequence that is easy to apply. The algorithm designs primer sets that produce fragments from all input sequences and maximizes the differences in the amplicon size or amplicon sequence among input sequences. We demonstrate that the primer sets designed by the algorithm clearly classified six subspecies of Lactobacillus delbrueckii, and we observed that the resolution of the method is equal to that of a multi-locus sequence analysis. The algorithm allows the easy but precise identification of bacteria within a short time. (SHRS is available freely from PyPI under the MIT license.).
Collapse
|
5
|
Carrington B, Bishop K, Sood R. A Comprehensive Review of Indel Detection Methods for Identification of Zebrafish Knockout Mutants Generated by Genome-Editing Nucleases. Genes (Basel) 2022; 13:857. [PMID: 35627242 PMCID: PMC9141975 DOI: 10.3390/genes13050857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
The use of zebrafish in functional genomics and disease modeling has become popular due to the ease of targeted mutagenesis with genome editing nucleases, i.e., zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). These nucleases, specifically CRISPR/Cas9, are routinely used to generate gene knockout mutants by causing a double stranded break at the desired site in the target gene and selecting for frameshift insertions or deletions (indels) caused by the errors during the repair process. Thus, a variety of methods have been developed to identify fish with indels during the process of mutant generation and phenotypic analysis. These methods range from PCR and gel-based low-throughput methods to high-throughput methods requiring specific reagents and/or equipment. Here, we provide a comprehensive review of currently used indel detection methods in zebrafish. By discussing the molecular basis for each method as well as their pros and cons, we hope that this review will serve as a comprehensive resource for zebrafish researchers, allowing them to choose the most appropriate method depending upon their budget, access to required equipment and the throughput needs of the projects.
Collapse
Affiliation(s)
| | | | - Raman Sood
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.C.); (K.B.)
| |
Collapse
|
6
|
Monteiro CS, Deconinck D, Eljasik P, Sobczak M, Derycke S, Panicz R, Kane N, Mazloomrezaei M, H Devlin R, Faria MA. A fast HRMA tool to authenticate eight salmonid species in commercial food products. Food Chem Toxicol 2021; 156:112440. [PMID: 34311008 DOI: 10.1016/j.fct.2021.112440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Atlantic and Pacific salmon are frequently consumed species with very different economic values: farmed Atlantic salmon is cheaper than wild-caught Pacific salmons. Species replacements occur with the high valued Pacific species (Oncorhynchus keta, O. gorbuscha, O. kisutch, O. nerka and O. tshawytscha) substituted by cheaper farmed Atlantic salmon (Salmo salar) and Atlantic salmon by rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta). Here we use High-Resolution Melting Analysis (HRMA) to identify eight salmonid species. We designed primers to generate short amplicons of 72 and 116 bp from the fish barcode genes CO1 and CYTB. The time of analysis was under 70 min, after DNA extraction. Food processing of Atlantic salmon (fresh, "Bellevue", "gravadlax", frozen and smoked) did not impact the HRMA profiles allowing reliable identification. A blind test was conducted by three different institutes, showing correct species identifications irrespective of the laboratory conducting the analysis. Finally, a total of 82 retail samples from three European countries were analyzed and a low substitution rate of 1.2% was found. The developed tool provides a quick way to investigate salmon fraud and contributes to safeguard consumers.
Collapse
Affiliation(s)
- Carolina Sousa Monteiro
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Dumas Deconinck
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Ankerstraat 1, B-8400, Oostende, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Ch. Deberiotstraat 32, B-3000, Leuven, Belgium
| | - Piotr Eljasik
- Department of Meat Science, Faculty of Food Science and Fisheries, West Pomeranian University of Technology Szczecin, Kazimierza Królewicza 4, 71-550, Szczecin, Poland
| | - Małgorzata Sobczak
- Department of Meat Science, Faculty of Food Science and Fisheries, West Pomeranian University of Technology Szczecin, Kazimierza Królewicza 4, 71-550, Szczecin, Poland
| | - Sofie Derycke
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Ankerstraat 1, B-8400, Oostende, Belgium; Department of Biology, Ghent University, Krijgslaan 281, Building S8, 9000, Ghent, Belgium
| | - Remigiusz Panicz
- Department of Meat Science, Faculty of Food Science and Fisheries, West Pomeranian University of Technology Szczecin, Kazimierza Królewicza 4, 71-550, Szczecin, Poland
| | - Nicola Kane
- BIOREX Food Diagnostics, 9A the Technology Park, Belfast Road, Antrim, BT41 1QS, UK
| | - Mohsen Mazloomrezaei
- BIOREX Food Diagnostics, 9A the Technology Park, Belfast Road, Antrim, BT41 1QS, UK
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1N6, Canada
| | - Miguel A Faria
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Characterization of Bacillus cereus sensu lato isolates from milk for consumption; phylogenetic identity, potential for spoilage and disease. Food Microbiol 2020; 93:103604. [PMID: 32912579 DOI: 10.1016/j.fm.2020.103604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/29/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022]
Abstract
This study addresses the biodiversity of Bacillus cereus group population present along the value chain of milk for consumption. The B. cereus population did not grow and remained mainly unaltered during storage of milk at 4 °C while storage at a suboptimal temperature at 8 °C (representative of a broken cold chain) caused a major shift in its composition. Mesophilic strains dominated the B. cereus population in raw milk and after storage at 4 °C, while psycrotrophic strains dominated after storage at 8 °C. All psycrotrophic and mesophilic isolates (n = 368) demonstrated high spoilage potentials of the milk components. Fifteen out of 20 mesophilic isolates but only two out of 40 psychrotrophic isolates, exhibited vero cell toxicity. No genes encoding the emetic toxin cereulide were detected in the genomes of 100 milk isolates while 14 of them harbored the enterotoxin genes cytK1/cytK2. Both psycrotrophic and mesophilic isolates carried the enterotoxin genes nheA and hblA. Together, the results provide insight into the composition and properties, of the B. cereus population present in milk along the value chain and during storage at optimal refrigerated temperature and at suboptimal temperature. This knowledge is useful in the dairy industry's work to assure high quality products and for risk assessment.
Collapse
|
8
|
Wright ES, Vetsigian KH. Inhibitory interactions promote frequent bistability among competing bacteria. Nat Commun 2016; 7:11274. [PMID: 27097658 PMCID: PMC4844671 DOI: 10.1038/ncomms11274] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
It is largely unknown how the process of microbial community assembly is affected by the order of species arrival, initial species abundances and interactions between species. A minimal way of capturing competitive abilities in a frequency-dependent manner is with an invasibility network specifying whether a species at low abundance can increase in frequency in an environment dominated by another species. Here, using a panel of prolific small-molecule producers and a habitat with feast-and-famine cycles, we show that the most abundant strain can often exclude other strains—resulting in bistability between pairs of strains. Instead of a single winner, the empirically determined invasibility network is ruled by multiple strains that cannot invade each other, and does not contain loops of cyclic dominance. Antibiotic inhibition contributes to bistability by helping producers resist invasions while at high abundance and by reducing producers' ability to invade when at low abundance. We know little about the effect of relationships between species on the assembly of microbial communities. Here the authors map pairwise invasion relations between bacteria and find that instead of one strain dominating, inhibitory interactions mean that often neither strain can invade the other.
Collapse
Affiliation(s)
- Erik S Wright
- Department of Bacteriology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53715, USA
| | - Kalin H Vetsigian
- Department of Bacteriology, Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, Wisconsin 53715, USA
| |
Collapse
|