1
|
Su Z, Wu Y, Cao K, Du J, Cao L, Wu Z, Wu X, Wang X, Song Y, Wang X, Duan H. APEX-pHLA: A novel method for accurate prediction of the binding between exogenous short peptides and HLA class I molecules. Methods 2024; 228:38-47. [PMID: 38772499 DOI: 10.1016/j.ymeth.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/28/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
Human leukocyte antigen (HLA) molecules play critically significant role within the realm of immunotherapy due to their capacities to recognize and bind exogenous antigens such as peptides, subsequently delivering them to immune cells. Predicting the binding between peptides and HLA molecules (pHLA) can expedite the screening of immunogenic peptides and facilitate vaccine design. However, traditional experimental methods are time-consuming and inefficient. In this study, an efficient method based on deep learning was developed for predicting peptide-HLA binding, which treated peptide sequences as linguistic entities. It combined the architectures of textCNN and BiLSTM to create a deep neural network model called APEX-pHLA. This model operated without limitations related to HLA class I allele variants and peptide segment lengths, enabling efficient encoding of sequence features for both HLA and peptide segments. On the independent test set, the model achieved Accuracy, ROC_AUC, F1, and MCC is 0.9449, 0.9850, 0.9453, and 0.8899, respectively. Similarly, on an external test set, the results were 0.9803, 0.9574, 0.8835, and 0.7863, respectively. These findings outperformed fifteen methods previously reported in the literature. The accurate prediction capability of the APEX-pHLA model in peptide-HLA binding might provide valuable insights for future HLA vaccine design.
Collapse
Affiliation(s)
- Zhihao Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Yejian Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Kaiqiang Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Jie Du
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Lujing Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhipeng Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xinyi Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xinqiao Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ying Song
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xudong Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Hongliang Duan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China.
| |
Collapse
|
2
|
Hong N, Jiang D, Wang Z, Sun H, Luo H, Bao L, Song M, Kang Y, Hou T. TransfIGN: A Structure-Based Deep Learning Method for Modeling the Interaction between HLA-A*02:01 and Antigen Peptides. J Chem Inf Model 2024; 64:5016-5027. [PMID: 38920330 DOI: 10.1021/acs.jcim.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The intricate interaction between major histocompatibility complexes (MHCs) and antigen peptides with diverse amino acid sequences plays a pivotal role in immune responses and T cell activity. In recent years, deep learning (DL)-based models have emerged as promising tools for accelerating antigen peptide screening. However, most of these models solely rely on one-dimensional amino acid sequences, overlooking crucial information required for the three-dimensional (3-D) space binding process. In this study, we propose TransfIGN, a structure-based DL model that is inspired by our previously developed framework, Interaction Graph Network (IGN), and incorporates sequence information from transformers to predict the interactions between HLA-A*02:01 and antigen peptides. Our model, trained on a comprehensive data set containing 61,816 sequences with 9051 binding affinity labels and 56,848 eluted ligand labels, achieves an area under the curve (AUC) of 0.893 on the binary data set, better than state-of-the-art sequence-based models trained on larger data sets such as NetMHCpan4.1, ANN, and TransPHLA. Furthermore, when evaluated on the IEDB weekly benchmark data sets, our predictions (AUC = 0.816) are better than those of the recommended methods like the IEDB consensus (AUC = 0.795). Notably, the interaction weight matrices generated by our method highlight the strong interactions at specific positions within peptides, emphasizing the model's ability to provide physical interpretability. This capability to unveil binding mechanisms through intricate structural features holds promise for new immunotherapeutic avenues.
Collapse
Affiliation(s)
- Nanqi Hong
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hao Luo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingjie Bao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingli Song
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
3
|
Wu J, Li J, Chen S, Zhou Z. DeepHLApan: A Deep Learning Approach for the Prediction of Peptide-HLA Binding and Immunogenicity. Methods Mol Biol 2024; 2809:237-244. [PMID: 38907901 DOI: 10.1007/978-1-0716-3874-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Neoantigens are crucial in distinguishing cancer cells from normal ones and play a significant role in cancer immunotherapy. The field of bioinformatics prediction for tumor neoantigens has rapidly developed, focusing on the prediction of peptide-HLA binding affinity. In this chapter, we introduce a user-friendly tool named DeepHLApan, which utilizes deep learning techniques to predict neoantigens by considering both peptide-HLA binding affinity and immunogenicity. We provide the application of DeepHLApan, along with the source code, docker version, and web-server. These resources are freely available at https://github.com/zjupgx/deephlapan and http://pgx.zju.edu.cn/deephlapan/ .
Collapse
Affiliation(s)
- Jingcheng Wu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaoyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Dhall A, Jain S, Sharma N, Naorem LD, Kaur D, Patiyal S, Raghava GPS. In silico tools and databases for designing cancer immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:1-50. [PMID: 35305716 DOI: 10.1016/bs.apcsb.2021.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunotherapy is a rapidly growing therapy for cancer which have numerous benefits over conventional treatments like surgery, chemotherapy, and radiation. Overall survival of cancer patients has improved significantly due to the use of immunotherapy. It acts as a novel pillar for treating different malignancies from their primary to the metastatic stage. Recent preferments in high-throughput sequencing and computational immunology leads to the development of targeted immunotherapy for precision oncology. In the last few decades, several computational methods and resources have been developed for designing immunotherapy against cancer. In this review, we have summarized cancer-associated genomic, transcriptomic, and mutation profile repositories. We have also enlisted in silico methods for the prediction of vaccine candidates, HLA binders, cytokines inducing peptides, and potential neoepitopes. Of note, we have incorporated the most important bioinformatics pipelines and resources for the designing of cancer immunotherapy. Moreover, to facilitate the scientific community, we have developed a web portal entitled ImmCancer (https://webs.iiitd.edu.in/raghava/immcancer/), comprises cancer immunotherapy tools and repositories.
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Shipra Jain
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Leimarembi Devi Naorem
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Dilraj Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi, India.
| |
Collapse
|
5
|
Abstract
The assessment of immunogenicity of biopharmaceuticals is a crucial step in the process of their development. Immunogenicity is related to the activation of adaptive immunity. The complexity of the immune system manifests through numerous different mechanisms, which allows the use of different approaches for predicting the immunogenicity of biopharmaceuticals. The direct experimental approaches are sometimes expensive and time consuming, or their results need to be confirmed. In this case, computational methods for immunogenicity prediction appear as an appropriate complement in the process of drug design. In this review, we analyze the use of various In silico methods and approaches for immunogenicity prediction of biomolecules: sequence alignment algorithms, predicting subcellular localization, searching for major histocompatibility complex (MHC) binding motifs, predicting T and B cell epitopes based on machine learning algorithms, molecular docking, and molecular dynamics simulations. Computational tools for antigenicity and allergenicity prediction also are considered.
Collapse
|
6
|
Gopanenko AV, Kosobokova EN, Kosorukov VS. Main Strategies for the Identification of Neoantigens. Cancers (Basel) 2020; 12:E2879. [PMID: 33036391 PMCID: PMC7600129 DOI: 10.3390/cancers12102879] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Genetic instability of tumors leads to the appearance of numerous tumor-specific somatic mutations that could potentially result in the production of mutated peptides that are presented on the cell surface by the MHC molecules. Peptides of this kind are commonly called neoantigens. Their presence on the cell surface specifically distinguishes tumors from healthy tissues. This feature makes neoantigens a promising target for immunotherapy. The rapid evolution of high-throughput genomics and proteomics makes it possible to implement these techniques in clinical practice. In particular, they provide useful tools for the investigation of neoantigens. The most valuable genomic approach to this problem is whole-exome sequencing coupled with RNA-seq. High-throughput mass-spectrometry is another option for direct identification of MHC-bound peptides, which is capable of revealing the entire MHC-bound peptidome. Finally, structure-based predictions could significantly improve the understanding of physicochemical and structural features that affect the immunogenicity of peptides. The development of pipelines combining such tools could improve the accuracy of the peptide selection process and decrease the required time. Here we present a review of the main existing approaches to investigating the neoantigens and suggest a possible ideal pipeline that takes into account all modern trends in the context of neoantigen discovery.
Collapse
Affiliation(s)
| | | | - Vyacheslav S. Kosorukov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (A.V.G.); (E.N.K.)
| |
Collapse
|
7
|
Mei S, Li F, Leier A, Marquez-Lago TT, Giam K, Croft NP, Akutsu T, Smith AI, Li J, Rossjohn J, Purcell AW, Song J. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Brief Bioinform 2020; 21:1119-1135. [PMID: 31204427 DOI: 10.1093/bib/bbz051] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
Human leukocyte antigen class I (HLA-I) molecules are encoded by major histocompatibility complex (MHC) class I loci in humans. The binding and interaction between HLA-I molecules and intracellular peptides derived from a variety of proteolytic mechanisms play a crucial role in subsequent T-cell recognition of target cells and the specificity of the immune response. In this context, tools that predict the likelihood for a peptide to bind to specific HLA class I allotypes are important for selecting the most promising antigenic targets for immunotherapy. In this article, we comprehensively review a variety of currently available tools for predicting the binding of peptides to a selection of HLA-I allomorphs. Specifically, we compare their calculation methods for the prediction score, employed algorithms, evaluation strategies and software functionalities. In addition, we have evaluated the prediction performance of the reviewed tools based on an independent validation data set, containing 21 101 experimentally verified ligands across 19 HLA-I allotypes. The benchmarking results show that MixMHCpred 2.0.1 achieves the best performance for predicting peptides binding to most of the HLA-I allomorphs studied, while NetMHCpan 4.0 and NetMHCcons 1.1 outperform the other machine learning-based and consensus-based tools, respectively. Importantly, it should be noted that a peptide predicted with a higher binding score for a specific HLA allotype does not necessarily imply it will be immunogenic. That said, peptide-binding predictors are still very useful in that they can help to significantly reduce the large number of epitope candidates that need to be experimentally verified. Several other factors, including susceptibility to proteasome cleavage, peptide transport into the endoplasmic reticulum and T-cell receptor repertoire, also contribute to the immunogenicity of peptide antigens, and some of them can be considered by some predictors. Therefore, integrating features derived from these additional factors together with HLA-binding properties by using machine-learning algorithms may increase the prediction accuracy of immunogenic peptides. As such, we anticipate that this review and benchmarking survey will assist researchers in selecting appropriate prediction tools that best suit their purposes and provide useful guidelines for the development of improved antigen predictors in the future.
Collapse
Affiliation(s)
- Shutao Mei
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Fuyi Li
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - André Leier
- Department of Genetics and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Tatiana T Marquez-Lago
- Department of Genetics and Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Kailin Giam
- Department of Immunology, King's College London, London, UK
| | - Nathan P Croft
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Tatsuya Akutsu
- Bioinformatics Centre, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - A Ian Smith
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Jamie Rossjohn
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry & Molecular Biology, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Monash Centre for Data Science, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Wu J, Wang W, Zhang J, Zhou B, Zhao W, Su Z, Gu X, Wu J, Zhou Z, Chen S. DeepHLApan: A Deep Learning Approach for Neoantigen Prediction Considering Both HLA-Peptide Binding and Immunogenicity. Front Immunol 2019; 10:2559. [PMID: 31736974 PMCID: PMC6838785 DOI: 10.3389/fimmu.2019.02559] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Neoantigens play important roles in cancer immunotherapy. Current methods used for neoantigen prediction focus on the binding between human leukocyte antigens (HLAs) and peptides, which is insufficient for high-confidence neoantigen prediction. In this study, we apply deep learning techniques to predict neoantigens considering both the possibility of HLA-peptide binding (binding model) and the potential immunogenicity (immunogenicity model) of the peptide-HLA complex (pHLA). The binding model achieves comparable performance with other well-acknowledged tools on the latest Immune Epitope Database (IEDB) benchmark datasets and an independent mass spectrometry (MS) dataset. The immunogenicity model could significantly improve the prediction precision of neoantigens. The further application of our method to the mutations with pre-existing T-cell responses indicating its feasibility in clinical application. DeepHLApan is freely available at https://github.com/jiujiezz/deephlapan and http://biopharm.zju.edu.cn/deephlapan.
Collapse
Affiliation(s)
- Jingcheng Wu
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Wenzhe Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Jiucheng Zhang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Binbin Zhou
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Wenyi Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Zhixi Su
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Jian Wu
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuqing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Antunes DA, Devaurs D, Moll M, Lizée G, Kavraki LE. General Prediction of Peptide-MHC Binding Modes Using Incremental Docking: A Proof of Concept. Sci Rep 2018. [PMID: 29531253 PMCID: PMC5847594 DOI: 10.1038/s41598-018-22173-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The class I major histocompatibility complex (MHC) is capable of binding peptides derived from intracellular proteins and displaying them at the cell surface. The recognition of these peptide-MHC (pMHC) complexes by T-cells is the cornerstone of cellular immunity, enabling the elimination of infected or tumoral cells. T-cell-based immunotherapies against cancer, which leverage this mechanism, can greatly benefit from structural analyses of pMHC complexes. Several attempts have been made to use molecular docking for such analyses, but pMHC structure remains too challenging for even state-of-the-art docking tools. To overcome these limitations, we describe the use of an incremental meta-docking approach for structural prediction of pMHC complexes. Previous methods applied in this context used specific constraints to reduce the complexity of this prediction problem, at the expense of generality. Our strategy makes no assumption and can potentially be used to predict binding modes for any pMHC complex. Our method has been tested in a re-docking experiment, reproducing the binding modes of 25 pMHC complexes whose crystal structures are available. This study is a proof of concept that incremental docking strategies can lead to general geometry prediction of pMHC complexes, with potential applications for immunotherapy against cancer or infectious diseases.
Collapse
Affiliation(s)
- Dinler A Antunes
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Didier Devaurs
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Mark Moll
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Gregory Lizée
- Department of Melanoma Medical Oncology - Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Lydia E Kavraki
- Department of Computer Science, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
10
|
Liu G, Li D, Li Z, Qiu S, Li W, Chao CC, Yang N, Li H, Cheng Z, Song X, Cheng L, Zhang X, Wang J, Yang H, Ma K, Hou Y, Li B. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity. Gigascience 2018; 6:1-11. [PMID: 28327987 PMCID: PMC5467046 DOI: 10.1093/gigascience/gix017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/09/2017] [Indexed: 12/04/2022] Open
Abstract
Predicting peptide binding affinity with human leukocyte antigen (HLA) is a crucial step in developing powerful antitumor vaccine for cancer immunotherapy. Currently available methods work quite well in predicting peptide binding affinity with HLA alleles such as HLA-A*0201, HLA-A*0101, and HLA-B*0702 in terms of sensitivity and specificity. However, quite a few types of HLA alleles that are present in the majority of human populations including HLA-A*0202, HLA-A*0203, HLA-A*6802, HLA-B*5101, HLA-B*5301, HLA-B*5401, and HLA-B*5701 still cannot be predicted with satisfactory accuracy using currently available methods. Furthermore, currently the most popularly used methods for predicting peptide binding affinity are inefficient in identifying neoantigens from a large quantity of whole genome and transcriptome sequencing data. Here we present a Position Specific Scoring Matrix (PSSM)-based software called PSSMHCpan to accurately and efficiently predict peptide binding affinity with a broad coverage of HLA class I alleles. We evaluated the performance of PSSMHCpan by analyzing 10-fold cross-validation on a training database containing 87 HLA alleles and obtained an average area under receiver operating characteristic curve (AUC) of 0.94 and accuracy (ACC) of 0.85. In an independent dataset (Peptide Database of Cancer Immunity) evaluation, PSSMHCpan is substantially better than the popularly used NetMHC-4.0, NetMHCpan-3.0, PickPocket, Nebula, and SMM with a sensitivity of 0.90, as compared to 0.74, 0.81, 0.77, 0.24, and 0.79. In addition, PSSMHCpan is more than 197 times faster than NetMHC-4.0, NetMHCpan-3.0, PickPocket, sNebula, and SMM when predicting neoantigens from 661 263 peptides from a breast tumor sample. Finally, we built a neoantigen prediction pipeline and identified 117 017 neoantigens from 467 cancer samples of various cancers from TCGA. PSSMHCpan is superior to the currently available methods in predicting peptide binding affinity with a broad coverage of HLA class I alleles.
Collapse
Affiliation(s)
- Geng Liu
- BGI Education Center, University of Chinese Academy of Sciences, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China
| | - Dongli Li
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China
| | - Zhang Li
- BGI Education Center, University of Chinese Academy of Sciences, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Si Qiu
- BGI Education Center, University of Chinese Academy of Sciences, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Wenhui Li
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Cheng-Chi Chao
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Naibo Yang
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Handong Li
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Complete Genomics, Inc., 2071 Stierlin Court, Mountain View, CA 94043, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Stanford University, Montag Hall, 355 Galvez Street, Stanford, CA 94305, USA
| | - Xin Song
- The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunzhou Road, Xishan District, Kunming 650100, Yunnan Province, China
| | - Le Cheng
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,BGI-Yunnan, Haiyuan North Road, Kunming Hi-tech Development Zone, Kunming 650000, Yunnan Province, China
| | - Xiuqing Zhang
- BGI Education Center, University of Chinese Academy of Sciences, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jian Wang
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Yuhang Tong Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Huanming Yang
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Yuhang Tong Road, Xihu District, Hangzhou 310058, Zhejiang Province, China
| | - Kun Ma
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yong Hou
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,Department of Biology, University of Copenhagen, Nørregade 10, PO Box 2177, 1017 Copenhagen K, Denmark
| | - Bo Li
- BGI-Shenzhen, Main Building, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-GenoImmune, Gaoxing road, East Lake New Technology Development Zone, Wuhan 430079, China.,BGI-Forensics, Main Building, Beishan Industrial, Zone Yantian District, Shenzhen 518083, China
| |
Collapse
|
11
|
Antunes DA, Abella JR, Devaurs D, Rigo MM, Kavraki LE. Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes. Curr Top Med Chem 2018; 18:2239-2255. [PMID: 30582480 PMCID: PMC6361695 DOI: 10.2174/1568026619666181224101744] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/29/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022]
Abstract
Understanding the mechanisms involved in the activation of an immune response is essential to many fields in human health, including vaccine development and personalized cancer immunotherapy. A central step in the activation of the adaptive immune response is the recognition, by T-cell lymphocytes, of peptides displayed by a special type of receptor known as Major Histocompatibility Complex (MHC). Considering the key role of MHC receptors in T-cell activation, the computational prediction of peptide binding to MHC has been an important goal for many immunological applications. Sequence- based methods have become the gold standard for peptide-MHC binding affinity prediction, but structure-based methods are expected to provide more general predictions (i.e., predictions applicable to all types of MHC receptors). In addition, structural modeling of peptide-MHC complexes has the potential to uncover yet unknown drivers of T-cell activation, thus allowing for the development of better and safer therapies. In this review, we discuss the use of computational methods for the structural modeling of peptide-MHC complexes (i.e., binding mode prediction) and for the structure-based prediction of binding affinity.
Collapse
Affiliation(s)
| | - Jayvee R. Abella
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Didier Devaurs
- Computer Science Department, Rice University, Houston, Texas, USA
| | - Maurício M. Rigo
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lydia E. Kavraki
- Computer Science Department, Rice University, Houston, Texas, USA
| |
Collapse
|