1
|
Alanazi W, Meng D, Pollastri G. Advancements in one-dimensional protein structure prediction using machine learning and deep learning. Comput Struct Biotechnol J 2025; 27:1416-1430. [PMID: 40242292 PMCID: PMC12002955 DOI: 10.1016/j.csbj.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
The accurate prediction of protein structures remains a cornerstone challenge in structural bioinformatics, essential for understanding the intricate relationship between protein sequence, structure, and function. Recent advancements in Machine Learning (ML) and Deep Learning (DL) have revolutionized this field, offering innovative approaches to tackle one- dimensional (1D) protein structure annotations, including secondary structure, solvent accessibility, and intrinsic disorder. This review highlights the evolution of predictive methodologies, from early machine learning models to sophisticated deep learning frameworks that integrate sequence embeddings and pretrained language models. Key advancements, such as AlphaFold's transformative impact on structure prediction and the rise of protein language models (PLMs), have enabled unprecedented accuracy in capturing sequence-structure relationships. Furthermore, we explore the role of specialized datasets, benchmarking competitions, and multimodal integration in shaping state-of-the-art prediction models. By addressing challenges in data quality, scalability, interpretability, and task-specific optimization, this review underscores the transformative impact of ML, DL, and PLMs on 1D protein prediction while providing insights into emerging trends and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Wafa Alanazi
- School of Computer Science, University College Dublin, Belfield, Dublin D04 C1P1, Ireland
- Department of Computer Science, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Di Meng
- School of Computer Science, University College Dublin, Belfield, Dublin D04 C1P1, Ireland
| | - Gianluca Pollastri
- School of Computer Science, University College Dublin, Belfield, Dublin D04 C1P1, Ireland
| |
Collapse
|
2
|
Zhang J, Zhou F, Liang X, Kurgan L. Accurate Prediction of Protein-Binding Residues in Protein Sequences Using SCRIBER. Methods Mol Biol 2025; 2867:247-260. [PMID: 39576586 DOI: 10.1007/978-1-0716-4196-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Deciphering molecular-level mechanisms that govern protein-protein interactions (PPIs) relies in part on the accurate prediction of protein-binding partners and protein-binding residues. These predictions can be used to support a wide spectrum of applications that include development of PPI networks and protein docking programs, drug design studies, and investigations of molecular details that underlie certain diseases. Computational methods that predict protein-binding residues offer convenient, inexpensive, and relatively accurate data that can aid these efforts. We introduce and describe a user-friendly webserver for the SCRIBER method that conveniently provides state-of-the-art predictions of protein-binding residues and that minimizes cross-predictions, i.e., incorrect prediction of residues that bind other/non-protein ligands as protein binding. SCRIBER relies on a two-layer architecture that is specifically designed to reduce the cross-predictions. We motivate and explain this predictive architecture. We describe how to use the webserver, interact with its web interface, and collect, read, and understand results generated by SCRIBER. The SCRIBER webserver is available at http://biomine.cs.vcu.edu/servers/SCRIBER/ .
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China.
| | - Feng Zhou
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Xingchen Liang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Zhao B, Basu S, Kurgan L. DescribePROT Database of Residue-Level Protein Structure and Function Annotations. Methods Mol Biol 2025; 2867:169-184. [PMID: 39576581 DOI: 10.1007/978-1-0716-4196-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
DescribePROT is a freely available online database of structural and functional descriptors of proteins at the amino acid level. It provides access to 13 diverse descriptors that include sequence conservation, putative secondary structure, solvent accessibility, intrinsic disorder, and signal peptides, and putative annotations of residues that interact with proteins, peptides and nucleic acids. These data can be used to elucidate protein functions, to support efforts to develop therapeutics, and to develop and evaluate future predictors of protein structure and function. DescribePROT includes 7.8 billion predictions for 1.4 million proteins from 83 complete proteomes of popular model organisms. This information can be downloaded at multiple levels of scope (entire database, specific organisms, and individual proteins) and can be interacted with using a graphical interface that simultaneously displays data on multiple descriptors. We describe the contents of this resource, provide directions on how to use its interface, and offer instructions on how to obtain and interact with the underlying data. Moreover, we briefly discuss plans for a future expansion of this database. DescribePROT is available at http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/ .
Collapse
Affiliation(s)
- Bi Zhao
- Genomics program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Wang K, Hu G, Wu Z, Kurgan L. Accurate and Fast Prediction of Intrinsic Disorder Using flDPnn. Methods Mol Biol 2025; 2867:201-218. [PMID: 39576583 DOI: 10.1007/978-1-0716-4196-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Intrinsically disordered proteins (IDPs) that include one or more intrinsically disordered regions (IDRs) are abundant across all domains of life and viruses and play numerous functional roles in various cellular processes. Due to a relatively low throughput and high cost of experimental techniques for identifying IDRs, there is a growing need for fast and accurate computational algorithms that accurately predict IDRs/IDPs from protein sequences. We describe one of the leading disorder predictors, flDPnn. Results from a recent community-organized Critical Assessment of Intrinsic Disorder (CAID) experiment show that flDPnn provides fast and state-of-the-art predictions of disorder, which are supplemented with the predictions of several major disorder functions. This chapter provides a practical guide to flDPnn, which includes a brief explanation of its predictive model, descriptions of its web server and standalone versions, and a case study that showcases how to read and understand flDPnn's predictions.
Collapse
Affiliation(s)
- Kui Wang
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Gang Hu
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
5
|
Peng Z, Wu H, Luo Y, Kurgan L. Prediction of Disordered Linkers Using APOD. Methods Mol Biol 2025; 2867:219-231. [PMID: 39576584 DOI: 10.1007/978-1-0716-4196-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Intrinsically disordered linkers (DLs) connect protein domains and structural elements within domains and facilitate allosteric regulation. Computational studies suggest that thousands of proteins have DLs. Since there are only about 250 proteins with manually curated DL annotations (DisProt database ver. 9.3), computational approaches that make accurate predictions of DLs from the protein sequences are essential for reducing this annotation gap. To this end, we recently released the Accurate Predictor Of DLs (APOD) method. Empirical tests show that APOD achieves Area Under the ROC Curve (AUC) of 0.82 and Matthews Correlation Coefficient (MCC) of 0.42 on a low-similarity test dataset. We implement APOD as a freely available and convenient web server at https://yanglab.qd.sdu.edu.cn/APOD/ . This web server takes a protein sequence as the input and outputs an easy-to-parse prediction result, with the entire prediction process done on the server side. We also provide a standalone version of APOD for users who want to process large datasets of sequences. This version must be installed and run locally on the end user's computer. In this chapter, we overview APOD, explain how to locate and use the web server and the standalone implementation, and discuss how to read and interpret APOD's outputs. We also demonstrate utility of APOD based on a case study protein.
Collapse
Affiliation(s)
- Zhenling Peng
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China.
- Frontier Science Center for Nonlinear Expectations, Ministry of Education, Shandong University, Qingdao, China.
| | - Haiyan Wu
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
| | - Yuxian Luo
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
6
|
Wang K, Hu G, Basu S, Kurgan L. flDPnn2: Accurate and Fast Predictor of Intrinsic Disorder in Proteins. J Mol Biol 2024; 436:168605. [PMID: 39237195 DOI: 10.1016/j.jmb.2024.168605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 09/07/2024]
Abstract
Prediction of the intrinsic disorder in protein sequences is an active research area, with well over 100 predictors that were released to date. These efforts are motivated by the functional importance and high levels of abundance of intrinsic disorder, combined with relatively low amounts of experimental annotations. The disorder predictors are periodically evaluated by independent assessors in the Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiments. The recently completed CAID2 experiment assessed close to 40 state-of-the-art methods demonstrating that some of them produce accurate results. In particular, flDPnn2 method, which is the successor of flDPnn that performed well in the CAID1 experiment, secured the overall most accurate results on the Disorder-NOX dataset in CAID2. flDPnn2 implements a number of improvements when compared to its predecessor including changes to the inputs, increased size of the deep network model that we retrained on a larger training set, and addition of an alignment module. Using results from CAID2, we show that flDPnn2 produces accurate predictions very quickly, modestly improving over the accuracy of flDPnn and reducing the runtime by half, to about 27 s per protein. flDPnn2 is freely available as a convenient web server at http://biomine.cs.vcu.edu/servers/flDPnn2/.
Collapse
Affiliation(s)
- Kui Wang
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Gang Hu
- NITFID, School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Xu S, Onoda A. Accurate and Fast Prediction of Intrinsically Disordered Protein by Multiple Protein Language Models and Ensemble Learning. J Chem Inf Model 2024; 64:2901-2911. [PMID: 37883249 DOI: 10.1021/acs.jcim.3c01202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Intrinsically disordered proteins (IDPs) play a vital role in various biological processes and have attracted increasing attention in the past few decades. Predicting IDPs from the primary structures of proteins offers a rapid and facile means of protein analysis without necessitating crystal structures. In particular, machine learning methods have demonstrated their potential in this field. Recently, protein language models (PLMs) are emerging as a promising approach to extracting essential information from protein sequences and have been employed in protein modeling to utilize their advantages of precision and efficiency. In this article, we developed a novel IDP prediction method named IDP-ELM to predict the intrinsically disordered regions (IDRs) as well as their functions including disordered flexible linkers and disordered protein binding. This method utilizes high-dimensional representations extracted from several state-of-the-art PLMs and predicts IDRs by ensemble learning based on bidirectional recurrent neural networks. The performance of the method was evaluated on two independent test data sets from CAID (critical assessment of protein intrinsic disorder prediction) and CAID2, indicating notable improvements in terms of area under the receiver operating characteristic (AUC), Matthew's correlation coefficient (MCC), and F1 score. Moreover, IDP-ELM requires solely protein sequences as inputs and does not entail a time-consuming process of protein profile generation, which is a prerequisite for most existing state-of-the-art methods, enabling an accurate, fast, and convenient tool for proteome-level analysis. The corresponding reproducible source code and model weights are available at https://github.com/xu-shi-jie/idp-elm.
Collapse
Affiliation(s)
- Shijie Xu
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Onoda
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
8
|
Pepelnjak M, Rogawski R, Arkind G, Leushkin Y, Fainer I, Ben-Nissan G, Picotti P, Sharon M. Systematic identification of 20S proteasome substrates. Mol Syst Biol 2024; 20:403-427. [PMID: 38287148 PMCID: PMC10987551 DOI: 10.1038/s44320-024-00015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024] Open
Abstract
For years, proteasomal degradation was predominantly attributed to the ubiquitin-26S proteasome pathway. However, it is now evident that the core 20S proteasome can independently target proteins for degradation. With approximately half of the cellular proteasomes comprising free 20S complexes, this degradation mechanism is not rare. Identifying 20S-specific substrates is challenging due to the dual-targeting of some proteins to either 20S or 26S proteasomes and the non-specificity of proteasome inhibitors. Consequently, knowledge of 20S proteasome substrates relies on limited hypothesis-driven studies. To comprehensively explore 20S proteasome substrates, we employed advanced mass spectrometry, along with biochemical and cellular analyses. This systematic approach revealed hundreds of 20S proteasome substrates, including proteins undergoing specific N- or C-terminal cleavage, possibly for regulation. Notably, these substrates were enriched in RNA- and DNA-binding proteins with intrinsically disordered regions, often found in the nucleus and stress granules. Under cellular stress, we observed reduced proteolytic activity in oxidized proteasomes, with oxidized protein substrates exhibiting higher structural disorder compared to unmodified proteins. Overall, our study illuminates the nature of 20S substrates, offering crucial insights into 20S proteasome biology.
Collapse
Affiliation(s)
- Monika Pepelnjak
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Rivkah Rogawski
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Galina Arkind
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yegor Leushkin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
9
|
Garg A, González-Foutel NS, Gielnik MB, Kjaergaard M. Design of functional intrinsically disordered proteins. Protein Eng Des Sel 2024; 37:gzae004. [PMID: 38431892 DOI: 10.1093/protein/gzae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
Many proteins do not fold into a fixed three-dimensional structure, but rather function in a highly disordered state. These intrinsically disordered proteins pose a unique challenge to protein engineering and design: How can proteins be designed de novo if not by tailoring their structure? Here, we will review the nascent field of design of intrinsically disordered proteins with focus on applications in biotechnology and medicine. The design goals should not necessarily be the same as for de novo design of folded proteins as disordered proteins have unique functional strengths and limitations. We focus on functions where intrinsically disordered proteins are uniquely suited including disordered linkers, desiccation chaperones, sensors of the chemical environment, delivery of pharmaceuticals, and constituents of biomolecular condensates. Design of functional intrinsically disordered proteins relies on a combination of computational tools and heuristics gleaned from sequence-function studies. There are few cases where intrinsically disordered proteins have made it into industrial applications. However, we argue that disordered proteins can perform many roles currently performed by organic polymers, and that these proteins might be more designable due to their modularity.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Maciej B Gielnik
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Zhang L, Xiao K, Wang X, Kong L. A novel fusion technology utilizing complex network and sequence information for FAD-binding site identification. Anal Biochem 2024; 685:115401. [PMID: 37981176 DOI: 10.1016/j.ab.2023.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Flavin adenine dinucleotide (FAD) binding sites play an increasingly important role as useful targets for inhibiting bacterial infections. To reveal protein topological structural information as a reasonable complement for the identification FAD-binding sites, we designed a novel fusion technology according to sequence and complex network. The specially designed feature vectors were combined and fed into CatBoost for model construction. Moreover, due to the minority class (positive samples) is more significant for biological researches, a random under-sampling technique was applied to solve the imbalance. Compared with the previous methods, our methods achieved the best results for two independent test datasets. Especially, the MCC obtained by FADsite and FADsite_seq were 14.37 %-53.37 % and 21.81 %-60.81 % higher than the results of existing methods on Test6; and they showed improvements ranging from 6.03 % to 21.96 % and 19.77 %-35.70 % on Test4. Meanwhile, statistical tests show that our methods significantly differ from the state-of-the-art methods and the cross-entropy loss shows that our methods have high certainty. The excellent results demonstrated the effectiveness of using sequence and complex network information in identifying FAD-binding sites. It may be complementary to other biological studies. The data and resource codes are available at https://github.com/Kangxiaoneuq/FADsite.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China; Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, PR China
| | - Kang Xiao
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China
| | - Xueting Wang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, PR China
| | - Liang Kong
- Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, PR China; School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, PR China.
| |
Collapse
|
11
|
Basu S, Zhao B, Biró B, Faraggi E, Gsponer J, Hu G, Kloczkowski A, Malhis N, Mirdita M, Söding J, Steinegger M, Wang D, Wang K, Xu D, Zhang J, Kurgan L. DescribePROT in 2023: more, higher-quality and experimental annotations and improved data download options. Nucleic Acids Res 2024; 52:D426-D433. [PMID: 37933852 PMCID: PMC10767971 DOI: 10.1093/nar/gkad985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
The DescribePROT database of amino acid-level descriptors of protein structures and functions was substantially expanded since its release in 2020. This expansion includes substantial increase in the size, scope, and quality of the underlying data, the addition of experimental structural information, the inclusion of new data download options, and an upgraded graphical interface. DescribePROT currently covers 19 structural and functional descriptors for proteins in 273 reference proteomes generated by 11 accurate and complementary predictive tools. Users can search our resource in multiple ways, interact with the data using the graphical interface, and download data at various scales including individual proteins, entire proteomes, and whole database. The annotations in DescribePROT are useful for a broad spectrum of studies that include investigations of protein structure and function, development and validation of predictive tools, and to support efforts in understanding molecular underpinnings of diseases and development of therapeutics. DescribePROT can be freely accessed at http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/.
Collapse
Affiliation(s)
- Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Bi Zhao
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Bálint Biró
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
- Department of Animal Biotechnology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Eshel Faraggi
- Physics Department, Indiana University, Indianapolis, IN, USA
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, P.R. China
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, USA
| | - Nawar Malhis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Milot Mirdita
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Johannes Söding
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Republic of Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, South Korea
| | - Duolin Wang
- Department of Electrical Engineer and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Kui Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, P.R. China
| | - Dong Xu
- Department of Electrical Engineer and Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, P.R. China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
12
|
Pang Y, Liu B. DisoFLAG: accurate prediction of protein intrinsic disorder and its functions using graph-based interaction protein language model. BMC Biol 2024; 22:3. [PMID: 38166858 PMCID: PMC10762911 DOI: 10.1186/s12915-023-01803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Intrinsically disordered proteins and regions (IDPs/IDRs) are functionally important proteins and regions that exist as highly dynamic conformations under natural physiological conditions. IDPs/IDRs exhibit a broad range of molecular functions, and their functions involve binding interactions with partners and remaining native structural flexibility. The rapid increase in the number of proteins in sequence databases and the diversity of disordered functions challenge existing computational methods for predicting protein intrinsic disorder and disordered functions. A disordered region interacts with different partners to perform multiple functions, and these disordered functions exhibit different dependencies and correlations. In this study, we introduce DisoFLAG, a computational method that leverages a graph-based interaction protein language model (GiPLM) for jointly predicting disorder and its multiple potential functions. GiPLM integrates protein semantic information based on pre-trained protein language models into graph-based interaction units to enhance the correlation of the semantic representation of multiple disordered functions. The DisoFLAG predictor takes amino acid sequences as the only inputs and provides predictions of intrinsic disorder and six disordered functions for proteins, including protein-binding, DNA-binding, RNA-binding, ion-binding, lipid-binding, and flexible linker. We evaluated the predictive performance of DisoFLAG following the Critical Assessment of protein Intrinsic Disorder (CAID) experiments, and the results demonstrated that DisoFLAG offers accurate and comprehensive predictions of disordered functions, extending the current coverage of computationally predicted disordered function categories. The standalone package and web server of DisoFLAG have been established to provide accurate prediction tools for intrinsic disorders and their associated functions.
Collapse
Affiliation(s)
- Yihe Pang
- School of Computer Science and Technology, Beijing Institute of Technology, No. 5, South Zhongguancun Street, Beijing, Haidian District, 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, No. 5, South Zhongguancun Street, Beijing, Haidian District, 100081, China.
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, No. 5, South Zhongguancun Street, Beijing, Haidian District, 100081, China.
| |
Collapse
|
13
|
Liu H, Jian Y, Hou J, Zeng C, Zhao Y. RNet: a network strategy to predict RNA binding preferences. Brief Bioinform 2023; 25:bbad482. [PMID: 38145947 PMCID: PMC10749790 DOI: 10.1093/bib/bbad482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Determining the RNA binding preferences remains challenging because of the bottleneck of the binding interactions accompanied by subtle RNA flexibility. Typically, designing RNA inhibitors involves screening thousands of potential candidates for binding. Accurate binding site information can increase the number of successful hits even with few candidates. There are two main issues regarding RNA binding preference: binding site prediction and binding dynamical behavior prediction. Here, we propose one interpretable network-based approach, RNet, to acquire precise binding site and binding dynamical behavior information. RNetsite employs a machine learning-based network decomposition algorithm to predict RNA binding sites by analyzing the local and global network properties. Our research focuses on large RNAs with 3D structures without considering smaller regulatory RNAs, which are too small and dynamic. Our study shows that RNetsite outperforms existing methods, achieving precision values as high as 0.701 on TE18 and 0.788 on RB9 tests. In addition, RNetsite demonstrates remarkable robustness regarding perturbations in RNA structures. We also developed RNetdyn, a distance-based dynamical graph algorithm, to characterize the interface dynamical behavior consequences upon inhibitor binding. The simulation testing of competitive inhibitors indicates that RNetdyn outperforms the traditional method by 30%. The benchmark testing results demonstrate that RNet is highly accurate and robust. Our interpretable network algorithms can assist in predicting RNA binding preferences and accelerating RNA inhibitor design, providing valuable insights to the RNA research community.
Collapse
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Yiren Jian
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
14
|
Kurgan L, Hu G, Wang K, Ghadermarzi S, Zhao B, Malhis N, Erdős G, Gsponer J, Uversky VN, Dosztányi Z. Tutorial: a guide for the selection of fast and accurate computational tools for the prediction of intrinsic disorder in proteins. Nat Protoc 2023; 18:3157-3172. [PMID: 37740110 DOI: 10.1038/s41596-023-00876-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 09/24/2023]
Abstract
Intrinsic disorder is instrumental for a wide range of protein functions, and its analysis, using computational predictions from primary structures, complements secondary and tertiary structure-based approaches. In this Tutorial, we provide an overview and comparison of 23 publicly available computational tools with complementary parameters useful for intrinsic disorder prediction, partly relying on results from the Critical Assessment of protein Intrinsic Disorder prediction experiment. We consider factors such as accuracy, runtime, availability and the need for functional insights. The selected tools are available as web servers and downloadable programs, offer state-of-the-art predictions and can be used in a high-throughput manner. We provide examples and instructions for the selected tools to illustrate practical aspects related to the submission, collection and interpretation of predictions, as well as the timing and their limitations. We highlight two predictors for intrinsically disordered proteins, flDPnn as accurate and fast and IUPred as very fast and moderately accurate, while suggesting ANCHOR2 and MoRFchibi as two of the best-performing predictors for intrinsically disordered region binding. We link these tools to additional resources, including databases of predictions and web servers that integrate multiple predictive methods. Altogether, this Tutorial provides a hands-on guide to comparatively evaluating multiple predictors, submitting and collecting their own predictions, and reading and interpreting results. It is suitable for experimentalists and computational biologists interested in accurately and conveniently identifying intrinsic disorder, facilitating the functional characterization of the rapidly growing collections of protein sequences.
Collapse
Affiliation(s)
- Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Kui Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Nawar Malhis
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gábor Erdős
- MTA-ELTE Momentum Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Zsuzsanna Dosztányi
- MTA-ELTE Momentum Bioinformatics Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
15
|
Pang Y, Liu B. IDP-LM: Prediction of protein intrinsic disorder and disorder functions based on language models. PLoS Comput Biol 2023; 19:e1011657. [PMID: 37992088 DOI: 10.1371/journal.pcbi.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 12/06/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) are a class of functionally important proteins and regions that lack stable three-dimensional structures under the native physiologic conditions. They participate in critical biological processes and thus are associated with the pathogenesis of many severe human diseases. Identifying the IDPs/IDRs and their functions will be helpful for a comprehensive understanding of protein structures and functions, and inform studies of rational drug design. Over the past decades, the exponential growth in the number of proteins with sequence information has deepened the gap between uncharacterized and annotated disordered sequences. Protein language models have recently demonstrated their powerful abilities to capture complex structural and functional information from the enormous quantity of unlabelled protein sequences, providing opportunities to apply protein language models to uncover the intrinsic disorders and their biological properties from the amino acid sequences. In this study, we proposed a computational predictor called IDP-LM for predicting intrinsic disorder and disorder functions by leveraging the pre-trained protein language models. IDP-LM takes the embeddings extracted from three pre-trained protein language models as the exclusive inputs, including ProtBERT, ProtT5 and a disorder specific language model (IDP-BERT). The ablation analysis shown that the IDP-BERT provided fine-grained feature representations of disorder, and the combination of three language models is the key to the performance improvement of IDP-LM. The evaluation results on independent test datasets demonstrated that the IDP-LM provided high-quality prediction results for intrinsic disorder and four common disordered functions.
Collapse
Affiliation(s)
- Yihe Pang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
16
|
Pajkos M, Erdős G, Dosztányi Z. The Origin of Discrepancies between Predictions and Annotations in Intrinsically Disordered Proteins. Biomolecules 2023; 13:1442. [PMID: 37892124 PMCID: PMC10604070 DOI: 10.3390/biom13101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Disorder prediction methods that can discriminate between ordered and disordered regions have contributed fundamentally to our understanding of the properties and prevalence of intrinsically disordered proteins (IDPs) in proteomes as well as their functional roles. However, a recent large-scale assessment of the performance of these methods indicated that there is still room for further improvements, necessitating novel approaches to understand the strengths and weaknesses of individual methods. In this study, we compared two methods, IUPred and disorder prediction, based on the pLDDT scores derived from AlphaFold2 (AF2) models. We evaluated these methods using a dataset from the DisProt database, consisting of experimentally characterized disordered regions and subsets associated with diverse experimental methods and functions. IUPred and AF2 provided consistent predictions in 79% of cases for long disordered regions; however, for 15% of these cases, they both suggested order in disagreement with annotations. These discrepancies arose primarily due to weak experimental support, the presence of intermediate states, or context-dependent behavior, such as binding-induced transitions. Furthermore, AF2 tended to predict helical regions with high pLDDT scores within disordered segments, while IUPred had limitations in identifying linker regions. These results provide valuable insights into the inherent limitations and potential biases of disorder prediction methods.
Collapse
Affiliation(s)
| | | | - Zsuzsanna Dosztányi
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Stny 1/c, H-1117 Budapest, Hungary; (M.P.); (G.E.)
| |
Collapse
|
17
|
Zhao B, Ghadermarzi S, Kurgan L. Comparative evaluation of AlphaFold2 and disorder predictors for prediction of intrinsic disorder, disorder content and fully disordered proteins. Comput Struct Biotechnol J 2023; 21:3248-3258. [PMID: 38213902 PMCID: PMC10782001 DOI: 10.1016/j.csbj.2023.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 01/13/2024] Open
Abstract
We expand studies of AlphaFold2 (AF2) in the context of intrinsic disorder prediction by comparing it against a broad selection of 20 accurate, popular and recently released disorder predictors. We use 25% larger benchmark dataset with 646 proteins and cover protein-level predictions of disorder content and fully disordered proteins. AF2-based disorder predictions secure a relatively high Area Under receiver operating characteristic Curve (AUC) of 0.77 and are statistically outperformed by several modern disorder predictors that secure AUCs around 0.8 with median runtime of about 20 s compared to 1200 s for AF2. Moreover, AF2 provides modestly accurate predictions of fully disordered proteins (F1 = 0.59 vs. 0.91 for the best disorder predictor) and disorder content (mean absolute error of 0.21 vs. 0.15). AF2 also generates statistically more accurate disorder predictions for about 20% of proteins that have relatively short sequences and a few disordered regions that tend to be located at the sequence termini, and which are absent of disordered protein-binding regions. Interestingly, AF2 and the most accurate disorder predictors rely on deep neural networks, suggesting that these models are useful for protein structure and disorder predictions.
Collapse
Affiliation(s)
- Bi Zhao
- Genomics program, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
18
|
Abstract
There are over 100 computational predictors of intrinsic disorder. These methods predict amino acid-level propensities for disorder directly from protein sequences. The propensities can be used to annotate putative disordered residues and regions. This unit provides a practical and holistic introduction to the sequence-based intrinsic disorder prediction. We define intrinsic disorder, explain the format of computational prediction of disorder, and identify and describe several accurate predictors. We also introduce recently released databases of intrinsic disorder predictions and use an illustrative example to provide insights into how predictions should be interpreted and combined. Lastly, we summarize key experimental methods that can be used to validate computational predictions. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
19
|
Basu S, Gsponer J, Kurgan L. DEPICTER2: a comprehensive webserver for intrinsic disorder and disorder function prediction. Nucleic Acids Res 2023:7151337. [PMID: 37140058 DOI: 10.1093/nar/gkad330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Intrinsic disorder in proteins is relatively abundant in nature and essential for a broad spectrum of cellular functions. While disorder can be accurately predicted from protein sequences, as it was empirically demonstrated in recent community-organized assessments, it is rather challenging to collect and compile a comprehensive prediction that covers multiple disorder functions. To this end, we introduce the DEPICTER2 (DisorderEd PredictIon CenTER) webserver that offers convenient access to a curated collection of fast and accurate disorder and disorder function predictors. This server includes a state-of-the-art disorder predictor, flDPnn, and five modern methods that cover all currently predictable disorder functions: disordered linkers and protein, peptide, DNA, RNA and lipid binding. DEPICTER2 allows selection of any combination of the six methods, batch predictions of up to 25 proteins per request and provides interactive visualization of the resulting predictions. The webserver is freely available at http://biomine.cs.vcu.edu/servers/DEPICTER2/.
Collapse
Affiliation(s)
- Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
20
|
Pang Y, Liu B. TransDFL: Identification of Disordered Flexible Linkers in Proteins by Transfer Learning. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:359-369. [PMID: 36272675 PMCID: PMC10626177 DOI: 10.1016/j.gpb.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
Disordered flexible linkers (DFLs) are the functional disordered regions in proteins, which are the sub-regions of intrinsically disordered regions (IDRs) and play important roles in connecting domains and maintaining inter-domain interactions. Trained with the limited available DFLs, the existing DFL predictors based on the machine learning techniques tend to predict the ordered residues as DFLs, leading to a high falsepositive rate (FPR) and low prediction accuracy. Previous studies have shown that DFLs are extremely flexible disordered regions, which are usually predicted as disordered residues with high confidence [P(D) > 0.9] by an IDR predictor. Therefore, transferring an IDR predictor to an accurate DFL predictor is of great significance for understanding the functions of IDRs. In this study, we proposed a new predictor called TransDFL for identifying DFLs by transferring the RFPR-IDP predictor for IDR identification to the DFL prediction. The RFPR-IDP was pre-trained with IDR sequences to learn the general features between IDRs and DFLs, which is helpful to reduce the false positives in the ordered regions. RFPR-IDP was fine-tuned with the DFL sequences to capture the specific features of DFLs so as to be transferred into the TransDFL. Experimental results of two application scenarios (prediction of DFLs only in IDRs or prediction of DFLs in entire proteins) showed that TransDFL consistently outperformed other existing DFL predictors with higher accuracy. The corresponding web server of TransDFL can be freely accessed at http://bliulab.net/TransDFL/.
Collapse
Affiliation(s)
- Yihe Pang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
21
|
Ruiz-Molina N, Parsons J, Decker EL, Reski R. Structural modelling of human complement FHR1 and two of its synthetic derivatives provides insight into their in-vivo functions. Comput Struct Biotechnol J 2023; 21:1473-1486. [PMID: 36851916 PMCID: PMC9957715 DOI: 10.1016/j.csbj.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Human complement is the first line of defence against invading pathogens and is involved in tissue homeostasis. Complement-targeted therapies to treat several diseases caused by a dysregulated complement are highly desirable. Despite huge efforts invested in their development, only very few are currently available, and a deeper understanding of the numerous interactions and complement regulation mechanisms is indispensable. Two important complement regulators are human Factor H (FH) and Factor H-related protein 1 (FHR1). MFHR1 and MFHR13, two promising therapeutic candidates based on these regulators, combine the dimerization and C5-regulatory domains of FHR1 with the central C3-regulatory and cell surface-recognition domains of FH. Here, we used AlphaFold2 to model the structure of these two synthetic regulators. Moreover, we used AlphaFold-Multimer (AFM) to study possible interactions of C3 fragments and membrane attack complex (MAC) components C5, C7 and C9 in complex with FHR1, MFHR1, MFHR13 as well as the best-known MAC regulators vitronectin (Vn), clusterin and CD59, whose experimental structures remain undetermined. AFM successfully predicted the binding interfaces of FHR1 and the synthetic regulators with C3 fragments and suggested binding to C3. The models revealed structural differences in binding to these ligands through different interfaces. Additionally, AFM predictions of Vn, clusterin or CD59 with C7 or C9 agreed with previously published experimental results. Because the role of FHR1 as MAC regulator has been controversial, we analysed possible interactions with C5, C7 and C9. AFM predicted interactions of FHR1 with proteins of the terminal complement complex (TCC) as indicated by experimental observations, and located the interfaces in FHR11-2 and FHR14-5. According to AFM prediction, FHR1 might partially block the C3b binding site in C5, inhibiting C5 activation, and block C5b-7 complex formation and C9 polymerization, with similar mechanisms of action as clusterin and vitronectin. Here, we generate hypotheses and give the basis for the design of rational approaches to understand the molecular mechanism of MAC inhibition, which will facilitate the development of further complement therapeutics.
Collapse
Affiliation(s)
- Natalia Ruiz-Molina
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Han B, Ren C, Wang W, Li J, Gong X. Computational Prediction of Protein Intrinsically Disordered Region Related Interactions and Functions. Genes (Basel) 2023; 14:432. [PMID: 36833360 PMCID: PMC9956190 DOI: 10.3390/genes14020432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Intrinsically Disordered Proteins (IDPs) and Regions (IDRs) exist widely. Although without well-defined structures, they participate in many important biological processes. In addition, they are also widely related to human diseases and have become potential targets in drug discovery. However, there is a big gap between the experimental annotations related to IDPs/IDRs and their actual number. In recent decades, the computational methods related to IDPs/IDRs have been developed vigorously, including predicting IDPs/IDRs, the binding modes of IDPs/IDRs, the binding sites of IDPs/IDRs, and the molecular functions of IDPs/IDRs according to different tasks. In view of the correlation between these predictors, we have reviewed these prediction methods uniformly for the first time, summarized their computational methods and predictive performance, and discussed some problems and perspectives.
Collapse
Affiliation(s)
- Bingqing Han
- Mathematical Intelligence Application Lab, Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China
| | - Chongjiao Ren
- Mathematical Intelligence Application Lab, Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China
| | - Wenda Wang
- Mathematical Intelligence Application Lab, Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China
| | - Jiashan Li
- Mathematical Intelligence Application Lab, Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China
| | - Xinqi Gong
- Mathematical Intelligence Application Lab, Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, China
- Beijing Academy of Intelligence, Beijing 100083, China
| |
Collapse
|
23
|
Peng Z, Li Z, Meng Q, Zhao B, Kurgan L. CLIP: accurate prediction of disordered linear interacting peptides from protein sequences using co-evolutionary information. Brief Bioinform 2023; 24:6858950. [PMID: 36458437 DOI: 10.1093/bib/bbac502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 12/04/2022] Open
Abstract
One of key features of intrinsically disordered regions (IDRs) is facilitation of protein-protein and protein-nucleic acids interactions. These disordered binding regions include molecular recognition features (MoRFs), short linear motifs (SLiMs) and longer binding domains. Vast majority of current predictors of disordered binding regions target MoRFs, with a handful of methods that predict SLiMs and disordered protein-binding domains. A new and broader class of disordered binding regions, linear interacting peptides (LIPs), was introduced recently and applied in the MobiDB resource. LIPs are segments in protein sequences that undergo disorder-to-order transition upon binding to a protein or a nucleic acid, and they cover MoRFs, SLiMs and disordered protein-binding domains. Although current predictors of MoRFs and disordered protein-binding regions could be used to identify some LIPs, there are no dedicated sequence-based predictors of LIPs. To this end, we introduce CLIP, a new predictor of LIPs that utilizes robust logistic regression model to combine three complementary types of inputs: co-evolutionary information derived from multiple sequence alignments, physicochemical profiles and disorder predictions. Ablation analysis suggests that the co-evolutionary information is particularly useful for this prediction and that combining the three inputs provides substantial improvements when compared to using these inputs individually. Comparative empirical assessments using low-similarity test datasets reveal that CLIP secures area under receiver operating characteristic curve (AUC) of 0.8 and substantially improves over the results produced by the closest current tools that predict MoRFs and disordered protein-binding regions. The webserver of CLIP is freely available at http://biomine.cs.vcu.edu/servers/CLIP/ and the standalone code can be downloaded from http://yanglab.qd.sdu.edu.cn/download/CLIP/.
Collapse
Affiliation(s)
- Zhenling Peng
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.,Frontier Science Center for Nonlinear Expectations, Ministry of Education, Qingdao, 266237, China
| | - Zixia Li
- Center for Applied Mathematics, Tianjin University, Tianjin, 300072, China
| | - Qiaozhen Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, 300072, China
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
24
|
Xia C, Feng SH, Xia Y, Pan X, Shen HB. Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network. Brief Bioinform 2023; 24:6982728. [PMID: 36627113 DOI: 10.1093/bib/bbac603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023] Open
Abstract
Protein-ligand binding affinity prediction is an important task in structural bioinformatics for drug discovery and design. Although various scoring functions (SFs) have been proposed, it remains challenging to accurately evaluate the binding affinity of a protein-ligand complex with the known bound structure because of the potential preference of scoring system. In recent years, deep learning (DL) techniques have been applied to SFs without sophisticated feature engineering. Nevertheless, existing methods cannot model the differential contribution of atoms in various regions of proteins, and the relationship between atom properties and intermolecular distance is also not fully explored. We propose a novel empirical graph neural network for accurate protein-ligand binding affinity prediction (EGNA). Graphs of protein, ligand and their interactions are constructed based on different regions of each bound complex. Proteins and ligands are effectively represented by graph convolutional layers, enabling the EGNA to capture interaction patterns precisely by simulating empirical SFs. The contributions of different factors on binding affinity can thus be transparently investigated. EGNA is compared with the state-of-the-art machine learning-based SFs on two widely used benchmark data sets. The results demonstrate the superiority of EGNA and its good generalization capability.
Collapse
Affiliation(s)
- Chunqiu Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China
| | - Shi-Hao Feng
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China
| | - Ying Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China
| |
Collapse
|
25
|
Zhang F, Li M, Zhang J, Shi W, Kurgan L. DeepPRObind: Modular Deep Learner that Accurately Predicts Structure and Disorder-Annotated Protein Binding Residues. J Mol Biol 2023:167945. [PMID: 36621533 DOI: 10.1016/j.jmb.2023.167945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Current sequence-based predictors of protein-binding residues (PBRs) belong to two distinct categories: structure-trained vs. intrinsic disorder-trained. Since disordered PBRs differ from structured PBRs in several ways, including ability to bind multiple partners by folding into different conformations and enrichment in different amino acids, the structure-trained and disorder-trained predictors were shown to provide inaccurate results for the other annotation type. A simple consensus-based solution that combines structure- and disorder-trained methods provides limited levels of predictive performance and generates relatively many cross-predictions, where residues that interact with other ligand types are predicted as PBRs. We address this unsolved problem by designing a novel and fast deep-learner, DeepPRObind, that relies on carefully designed modular convolutional architecture and uses innovative aggregate input features. Comparative empirical tests on a low-similarity test dataset reveal that DeepPRObind generates accurate predictions of structured and disordered PBRs and low amounts of cross-predictions, outperforming a comprehensive collection of 12 predictors of PBRs. Given the relatively low runtime of DeepPRObind (40 seconds per protein), we further validate its results based on an analysis of putative PBRs in the yeast proteome, confirming that interactions in disordered regions are enriched among hub proteins. We release DeepPRObind as a convenient web server at https://www.csuligroup.com/DeepPRObind/.
Collapse
Affiliation(s)
- Fuhao Zhang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China.
| | - Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
| | - Wenbo Shi
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
26
|
Pang Y, Liu B. DMFpred: Predicting protein disorder molecular functions based on protein cubic language model. PLoS Comput Biol 2022; 18:e1010668. [PMID: 36315580 PMCID: PMC9674156 DOI: 10.1371/journal.pcbi.1010668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Intrinsically disordered proteins and regions (IDP/IDRs) are widespread in living organisms and perform various essential molecular functions. These functions are summarized as six general categories, including entropic chain, assembler, scavenger, effector, display site, and chaperone. The alteration of IDP functions is responsible for many human diseases. Therefore, identifying the function of disordered proteins is helpful for the studies of drug target discovery and rational drug design. Experimental identification of the molecular functions of IDP in the wet lab is an expensive and laborious procedure that is not applicable on a large scale. Some computational methods have been proposed and mainly focus on predicting the entropic chain function of IDRs, while the computational predictive methods for the remaining five important categories of disordered molecular functions are desired. Motivated by the growing numbers of experimental annotated functional sequences and the need to expand the coverage of disordered protein function predictors, we proposed DMFpred for disordered molecular functions prediction, covering disordered assembler, scavenger, effector, display site and chaperone. DMFpred employs the Protein Cubic Language Model (PCLM), which incorporates three protein language models for characterizing sequences, structural and functional features of proteins, and attention-based alignment for understanding the relationship among three captured features and generating a joint representation of proteins. The PCLM was pre-trained with large-scaled IDR sequences and fine-tuned with functional annotation sequences for molecular function prediction. The predictive performance evaluation on five categories of functional and multi-functional residues suggested that DMFpred provides high-quality predictions. The web-server of DMFpred can be freely accessed from http://bliulab.net/DMFpred/.
Collapse
Affiliation(s)
- Yihe Pang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
- * E-mail:
| |
Collapse
|
27
|
Xia C, Feng SH, Xia Y, Pan X, Shen HB. Fast protein structure comparison through effective representation learning with contrastive graph neural networks. PLoS Comput Biol 2022; 18:e1009986. [PMID: 35324898 PMCID: PMC8982879 DOI: 10.1371/journal.pcbi.1009986] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/05/2022] [Accepted: 03/03/2022] [Indexed: 12/03/2022] Open
Abstract
Protein structure alignment algorithms are often time-consuming, resulting in challenges for large-scale protein structure similarity-based retrieval. There is an urgent need for more efficient structure comparison approaches as the number of protein structures increases rapidly. In this paper, we propose an effective graph-based protein structure representation learning method, GraSR, for fast and accurate structure comparison. In GraSR, a graph is constructed based on the intra-residue distance derived from the tertiary structure. Then, deep graph neural networks (GNNs) with a short-cut connection learn graph representations of the tertiary structures under a contrastive learning framework. To further improve GraSR, a novel dynamic training data partition strategy and length-scaling cosine distance are introduced. We objectively evaluate our method GraSR on SCOPe v2.07 and a new released independent test set from PDB database with a designed comprehensive performance metric. Compared with other state-of-the-art methods, GraSR achieves about 7%-10% improvement on two benchmark datasets. GraSR is also much faster than alignment-based methods. We dig into the model and observe that the superiority of GraSR is mainly brought by the learned discriminative residue-level and global descriptors. The web-server and source code of GraSR are freely available at www.csbio.sjtu.edu.cn/bioinf/GraSR/ for academic use. The size and shape of protein structures vary considerably. Accurate protein structure comparison usually relies on structure alignment algorithms. However, superimposing two protein structures is relatively time-consuming, which makes it inappropriate for large-scale protein structure retrieval. Alignment-free algorithms are proposed for efficient protein structure comparison over the last few decades. These algorithms first transform the coordinates of atoms in two proteins to fixed-length vectors. Then, the comparison can be done by measuring the distance or similarity between two vectors, which is much faster than alignment. In this study, we propose a novel protein structure representation method for efficient structure comparison. Compared with other state-of-the-art alignment-free methods, our method achieves better performance on both ranking and multi-class classification tasks due to the powerful representation ability of deep graph neural networks. We dig into the model and observe that the superiority of our method is mainly brought by the learned discriminative residue-level and global descriptors.
Collapse
Affiliation(s)
- Chunqiu Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Shi-Hao Feng
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Ying Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
- * E-mail: (XP); (HS)
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
- * E-mail: (XP); (HS)
| |
Collapse
|
28
|
Zhao B, Kurgan L. Deep learning in prediction of intrinsic disorder in proteins. Comput Struct Biotechnol J 2022; 20:1286-1294. [PMID: 35356546 PMCID: PMC8927795 DOI: 10.1016/j.csbj.2022.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Intrinsic disorder prediction is an active area that has developed over 100 predictors. We identify and investigate a recent trend towards the development of deep neural network (DNN)-based methods. The first DNN-based method was released in 2013 and since 2019 deep learners account for majority of the new disorder predictors. We find that the 13 currently available DNN-based predictors are diverse in their topologies, sizes of their networks and the inputs that they utilize. We empirically show that the deep learners are statistically more accurate than other types of disorder predictors using the blind test dataset from the recent community assessment of intrinsic disorder predictions (CAID). We also identify several well-rounded DNN-based predictors that are accurate, fast and/or conveniently available. The popularity, favorable predictive performance and architectural flexibility suggest that deep networks are likely to fuel the development of future disordered predictors. Novel hybrid designs of deep networks could be used to adequately accommodate for diversity of types and flavors of intrinsic disorder. We also discuss scarcity of the DNN-based methods for the prediction of disordered binding regions and the need to develop more accurate methods for this prediction.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
29
|
Kurgan L. Resources for computational prediction of intrinsic disorder in proteins. Methods 2022; 204:132-141. [DOI: 10.1016/j.ymeth.2022.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
|
30
|
Tamburrini KC, Pesce G, Nilsson J, Gondelaud F, Kajava AV, Berrin JG, Longhi S. Predicting Protein Conformational Disorder and Disordered Binding Sites. Methods Mol Biol 2022; 2449:95-147. [PMID: 35507260 DOI: 10.1007/978-1-0716-2095-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the last two decades it has become increasingly evident that a large number of proteins adopt either a fully or a partially disordered conformation. Intrinsically disordered proteins are ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. Their conformational heterogeneity is encoded by the amino acid sequence, thereby allowing intrinsically disordered proteins or regions to be recognized based on their sequence properties. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting protein disorder and identifying intrinsically disordered binding sites.
Collapse
Affiliation(s)
- Ketty C Tamburrini
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Giulia Pesce
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Juliet Nilsson
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Frank Gondelaud
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, Montpellier, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Sonia Longhi
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France.
| |
Collapse
|
31
|
Abstract
INTRODUCTION Intrinsic disorder prediction field develops, assesses, and deploys computational predictors of disorder in protein sequences and constructs and disseminates databases of these predictions. Over 40 years of research resulted in the release of numerous resources. AREAS COVERED We identify and briefly summarize the most comprehensive to date collection of over 100 disorder predictors. We focus on their predictive models, availability and predictive performance. We categorize and study them from a historical point of view to highlight informative trends. EXPERT OPINION We find a consistent trend of improvements in predictive quality as newer and more advanced predictors are developed. The original focus on machine learning methods has shifted to meta-predictors in early 2010s, followed by a recent transition to deep learning. The use of deep learners will continue in foreseeable future given recent and convincing success of these methods. Moreover, a broad range of resources that facilitate convenient collection of accurate disorder predictions is available to users. They include web servers and standalone programs for disorder prediction, servers that combine prediction of disorder and disorder functions, and large databases of pre-computed predictions. We also point to the need to address the shortage of accurate methods that predict disordered binding regions.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
32
|
Katuwawala A, Zhao B, Kurgan L. DisoLipPred: accurate prediction of disordered lipid-binding residues in protein sequences with deep recurrent networks and transfer learning. Bioinformatics 2021; 38:115-124. [PMID: 34487138 DOI: 10.1093/bioinformatics/btab640] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Intrinsically disordered protein regions interact with proteins, nucleic acids and lipids. Regions that bind lipids are implicated in a wide spectrum of cellular functions and several human diseases. Motivated by the growing amount of experimental data for these interactions and lack of tools that can predict them from the protein sequence, we develop DisoLipPred, the first predictor of the disordered lipid-binding residues (DLBRs). RESULTS DisoLipPred relies on a deep bidirectional recurrent network that implements three innovative features: transfer learning, bypass module that sidesteps predictions for putative structured residues, and expanded inputs that cover physiochemical properties associated with the protein-lipid interactions. Ablation analysis shows that these features drive predictive quality of DisoLipPred. Tests on an independent test dataset and the yeast proteome reveal that DisoLipPred generates accurate results and that none of the related existing tools can be used to indirectly identify DLBR. We also show that DisoLipPred's predictions complement the results generated by predictors of the transmembrane regions. Altogether, we conclude that DisoLipPred provides high-quality predictions of DLBRs that complement the currently available methods. AVAILABILITY AND IMPLEMENTATION DisoLipPred's webserver is available at http://biomine.cs.vcu.edu/servers/DisoLipPred/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
33
|
Jia Y, Huang S, Zhang T. KK-DBP: A Multi-Feature Fusion Method for DNA-Binding Protein Identification Based on Random Forest. Front Genet 2021; 12:811158. [PMID: 34912382 PMCID: PMC8667860 DOI: 10.3389/fgene.2021.811158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 02/04/2023] Open
Abstract
DNA-binding protein (DBP) is a protein with a special DNA binding domain that is associated with many important molecular biological mechanisms. Rapid development of computational methods has made it possible to predict DBP on a large scale; however, existing methods do not fully integrate DBP-related features, resulting in rough prediction results. In this article, we develop a DNA-binding protein identification method called KK-DBP. To improve prediction accuracy, we propose a feature extraction method that fuses multiple PSSM features. The experimental results show a prediction accuracy on the independent test dataset PDB186 of 81.22%, which is the highest of all existing methods.
Collapse
Affiliation(s)
- Yuran Jia
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Shan Huang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| |
Collapse
|
34
|
Hu G, Katuwawala A, Wang K, Wu Z, Ghadermarzi S, Gao J, Kurgan L. flDPnn: Accurate intrinsic disorder prediction with putative propensities of disorder functions. Nat Commun 2021; 12:4438. [PMID: 34290238 PMCID: PMC8295265 DOI: 10.1038/s41467-021-24773-7] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023] Open
Abstract
Identification of intrinsic disorder in proteins relies in large part on computational predictors, which demands that their accuracy should be high. Since intrinsic disorder carries out a broad range of cellular functions, it is desirable to couple the disorder and disorder function predictions. We report a computational tool, flDPnn, that provides accurate, fast and comprehensive disorder and disorder function predictions from protein sequences. The recent Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment and results on other test datasets demonstrate that flDPnn offers accurate predictions of disorder, fully disordered proteins and four common disorder functions. These predictions are substantially better than the results of the existing disorder predictors and methods that predict functions of disorder. Ablation tests reveal that the high predictive performance stems from innovative ways used in flDPnn to derive sequence profiles and encode inputs. flDPnn's webserver is available at http://biomine.cs.vcu.edu/servers/flDPnn/.
Collapse
Affiliation(s)
- Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Kui Wang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Jianzhao Gao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
35
|
Oldfield CJ, Peng Z, Kurgan L. Disordered RNA-Binding Region Prediction with DisoRDPbind. Methods Mol Biol 2021; 2106:225-239. [PMID: 31889261 DOI: 10.1007/978-1-0716-0231-7_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA chaperone activity is one of the many functions of intrinsically disordered regions (IDRs). IDRs function without the prerequisite of a stable structure. Instead, their functions arise from structural ensembles. A common theme in IDR function is molecular recognition; IDRs mediate interactions with other proteins, RNA, and DNA. Many computational methods are available to predict IDRs from protein sequence, but relatively few are available for predicting IDR functions. Available methods primarily focus on protein-protein interactions. DisoRDPbind was developed to predict several protein functions including interactions with RNA. This method is available as a user-friendly web interface, located at http://biomine.cs.vcu.edu/servers/DisoRDPbind/ . The development and architecture of DisoRDPbind is briefly presented, and its accuracy relative to other RNA-binding residue predictors is discussed. We explain usage of the web interface in detail and provide an example of prediction results and interpretation. While DisoRDPbind does not identify RNA chaperones directly, we provide a case study of an RNA chaperone, HCV core protein, as an example of the method's utility in the study of RNA chaperones.
Collapse
Affiliation(s)
| | - Zhenling Peng
- Center for Applied Mathematics, Tianjin University, Tianjin, People's Republic of China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
36
|
Peng Z, Xing Q, Kurgan L. APOD: accurate sequence-based predictor of disordered flexible linkers. Bioinformatics 2021; 36:i754-i761. [PMID: 33381830 PMCID: PMC7773485 DOI: 10.1093/bioinformatics/btaa808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Motivation Disordered flexible linkers (DFLs) are abundant and functionally important intrinsically disordered regions that connect protein domains and structural elements within domains and which facilitate disorder-based allosteric regulation. Although computational estimates suggest that thousands of proteins have DFLs, they were annotated experimentally in <200 proteins. This substantial annotation gap can be reduced with the help of accurate computational predictors. The sole predictor of DFLs, DFLpred, trade-off accuracy for shorter runtime by excluding relevant but computationally costly predictive inputs. Moreover, it relies on the local/window-based information while lacking to consider useful protein-level characteristics. Results We conceptualize, design and test APOD (Accurate Predictor Of DFLs), the first highly accurate predictor that utilizes both local- and protein-level inputs that quantify propensity for disorder, sequence composition, sequence conservation and selected putative structural properties. Consequently, APOD offers significantly more accurate predictions when compared with its faster predecessor, DFLpred, and several other alternative ways to predict DFLs. These improvements stem from the use of a more comprehensive set of inputs that cover the protein-level information and the application of a more sophisticated predictive model, a well-parametrized support vector machine. APOD achieves area under the curve = 0.82 (28% improvement over DFLpred) and Matthews correlation coefficient = 0.42 (180% increase over DFLpred) when tested on an independent/low-similarity test dataset. Consequently, APOD is a suitable choice for accurate and small-scale prediction of DFLs. Availability and implementation https://yanglab.nankai.edu.cn/APOD/.
Collapse
Affiliation(s)
- Zhenling Peng
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China.,School of Statistics and Data Science, Nankai University, Tianjin 300074, China
| | - Qian Xing
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
37
|
Zhao B, Katuwawala A, Oldfield CJ, Dunker AK, Faraggi E, Gsponer J, Kloczkowski A, Malhis N, Mirdita M, Obradovic Z, Söding J, Steinegger M, Zhou Y, Kurgan L. DescribePROT: database of amino acid-level protein structure and function predictions. Nucleic Acids Res 2021; 49:D298-D308. [PMID: 33119734 PMCID: PMC7778963 DOI: 10.1093/nar/gkaa931] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022] Open
Abstract
We present DescribePROT, the database of predicted amino acid-level descriptors of structure and function of proteins. DescribePROT delivers a comprehensive collection of 13 complementary descriptors predicted using 10 popular and accurate algorithms for 83 complete proteomes that cover key model organisms. The current version includes 7.8 billion predictions for close to 600 million amino acids in 1.4 million proteins. The descriptors encompass sequence conservation, position specific scoring matrix, secondary structure, solvent accessibility, intrinsic disorder, disordered linkers, signal peptides, MoRFs and interactions with proteins, DNA and RNAs. Users can search DescribePROT by the amino acid sequence and the UniProt accession number and entry name. The pre-computed results are made available instantaneously. The predictions can be accesses via an interactive graphical interface that allows simultaneous analysis of multiple descriptors and can be also downloaded in structured formats at the protein, proteome and whole database scale. The putative annotations included by DescriPROT are useful for a broad range of studies, including: investigations of protein function, applied projects focusing on therapeutics and diseases, and in the development of predictors for other protein sequence descriptors. Future releases will expand the coverage of DescribePROT. DescribePROT can be accessed at http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/.
Collapse
Affiliation(s)
- Bi Zhao
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | | | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eshel Faraggi
- Battelle Center for Mathematical Medicine at the Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Andrzej Kloczkowski
- Battelle Center for Mathematical Medicine at the Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Nawar Malhis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Milot Mirdita
- Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Zoran Obradovic
- Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA
| | - Johannes Söding
- Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Martin Steinegger
- School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
38
|
Kurgan L, Li M, Li Y. The Methods and Tools for Intrinsic Disorder Prediction and their Application to Systems Medicine. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
39
|
Peng Z, Xing Q, Kurgan L. APOD: accurate sequence-based predictor of disordered flexible linkers. BIOINFORMATICS (OXFORD, ENGLAND) 2020; 36:i754-i761. [PMID: 33381830 DOI: 10.1101/2020.12.03.409755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 05/28/2023]
Abstract
MOTIVATION Disordered flexible linkers (DFLs) are abundant and functionally important intrinsically disordered regions that connect protein domains and structural elements within domains and which facilitate disorder-based allosteric regulation. Although computational estimates suggest that thousands of proteins have DFLs, they were annotated experimentally in <200 proteins. This substantial annotation gap can be reduced with the help of accurate computational predictors. The sole predictor of DFLs, DFLpred, trade-off accuracy for shorter runtime by excluding relevant but computationally costly predictive inputs. Moreover, it relies on the local/window-based information while lacking to consider useful protein-level characteristics. RESULTS We conceptualize, design and test APOD (Accurate Predictor Of DFLs), the first highly accurate predictor that utilizes both local- and protein-level inputs that quantify propensity for disorder, sequence composition, sequence conservation and selected putative structural properties. Consequently, APOD offers significantly more accurate predictions when compared with its faster predecessor, DFLpred, and several other alternative ways to predict DFLs. These improvements stem from the use of a more comprehensive set of inputs that cover the protein-level information and the application of a more sophisticated predictive model, a well-parametrized support vector machine. APOD achieves area under the curve = 0.82 (28% improvement over DFLpred) and Matthews correlation coefficient = 0.42 (180% increase over DFLpred) when tested on an independent/low-similarity test dataset. Consequently, APOD is a suitable choice for accurate and small-scale prediction of DFLs. AVAILABILITY AND IMPLEMENTATION https://yanglab.nankai.edu.cn/APOD/.
Collapse
Affiliation(s)
- Zhenling Peng
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
- School of Statistics and Data Science, Nankai University, Tianjin 300074, China
| | - Qian Xing
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
40
|
Katuwawala A, Kurgan L. Comparative Assessment of Intrinsic Disorder Predictions with a Focus on Protein and Nucleic Acid-Binding Proteins. Biomolecules 2020; 10:E1636. [PMID: 33291838 PMCID: PMC7762010 DOI: 10.3390/biom10121636] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/18/2023] Open
Abstract
With over 60 disorder predictors, users need help navigating the predictor selection task. We review 28 surveys of disorder predictors, showing that only 11 include assessment of predictive performance. We identify and address a few drawbacks of these past surveys. To this end, we release a novel benchmark dataset with reduced similarity to the training sets of the considered predictors. We use this dataset to perform a first-of-its-kind comparative analysis that targets two large functional families of disordered proteins that interact with proteins and with nucleic acids. We show that limiting sequence similarity between the benchmark and the training datasets has a substantial impact on predictive performance. We also demonstrate that predictive quality is sensitive to the use of the well-annotated order and inclusion of the fully structured proteins in the benchmark datasets, both of which should be considered in future assessments. We identify three predictors that provide favorable results using the new benchmark set. While we find that VSL2B offers the most accurate and robust results overall, ESpritz-DisProt and SPOT-Disorder perform particularly well for disordered proteins. Moreover, we find that predictions for the disordered protein-binding proteins suffer low predictive quality compared to generic disordered proteins and the disordered nucleic acids-binding proteins. This can be explained by the high disorder content of the disordered protein-binding proteins, which makes it difficult for the current methods to accurately identify ordered regions in these proteins. This finding motivates the development of a new generation of methods that would target these difficult-to-predict disordered proteins. We also discuss resources that support users in collecting and identifying high-quality disorder predictions.
Collapse
Affiliation(s)
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA;
| |
Collapse
|
41
|
Wang K, Hu G, Wu Z, Su H, Yang J, Kurgan L. Comprehensive Survey and Comparative Assessment of RNA-Binding Residue Predictions with Analysis by RNA Type. Int J Mol Sci 2020; 21:E6879. [PMID: 32961749 PMCID: PMC7554811 DOI: 10.3390/ijms21186879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
With close to 30 sequence-based predictors of RNA-binding residues (RBRs), this comparative survey aims to help with understanding and selection of the appropriate tools. We discuss past reviews on this topic, survey a comprehensive collection of predictors, and comparatively assess six representative methods. We provide a novel and well-designed benchmark dataset and we are the first to report and compare protein-level and datasets-level results, and to contextualize performance to specific types of RNAs. The methods considered here are well-cited and rely on machine learning algorithms on occasion combined with homology-based prediction. Empirical tests reveal that they provide relatively accurate predictions. Virtually all methods perform well for the proteins that interact with rRNAs, some generate accurate predictions for mRNAs, snRNA, SRP and IRES, while proteins that bind tRNAs are predicted poorly. Moreover, except for DRNApred, they confuse DNA and RNA-binding residues. None of the six methods consistently outperforms the others when tested on individual proteins. This variable and complementary protein-level performance suggests that users should not rely on applying just the single best dataset-level predictor. We recommend that future work should focus on the development of approaches that facilitate protein-level selection of accurate predictors and the consensus-based prediction of RBRs.
Collapse
Affiliation(s)
- Kui Wang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Gang Hu
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin 300071, China;
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Hong Su
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Jianyi Yang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China; (K.W.); (Z.W.); (H.S.); (J.Y.)
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
42
|
Use Chou's 5-Step Rule to Predict DNA-Binding Proteins with Evolutionary Information. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6984045. [PMID: 32775434 PMCID: PMC7407024 DOI: 10.1155/2020/6984045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/18/2020] [Indexed: 11/22/2022]
Abstract
The knowledge of DNA-binding proteins would help to understand the functions of proteins better in cellular biological processes. Research on the prediction of DNA-binding proteins can promote the research of drug proteins and computer acidified drugs. In recent years, methods based on machine learning are usually used to predict proteins. Although great predicted performance can be achieved via current methods, researchers still need to invest more research in terms of the improvement of predicted performance. In this study, the prediction of DNA-binding proteins is studied from the perspective of evolutionary information and the support vector machine method. One machine learning model for predicting DNA-binding proteins based on evolutionary features by using Chou's 5-step rule is put forward. The results show that great predicted performance is obtained on benchmark dataset PDB1075 and independent dataset PDB186, achieving the accuracy of 86.05% and 75.30%, respectively. Thus, the method proposed is comparable to a certain degree, and it may work even better than other methods to some extent.
Collapse
|
43
|
Zhang J, Kurgan L. SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences. Bioinformatics 2020; 35:i343-i353. [PMID: 31510679 PMCID: PMC6612887 DOI: 10.1093/bioinformatics/btz324] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Motivation Accurate predictions of protein-binding residues (PBRs) enhances understanding of molecular-level rules governing protein–protein interactions, helps protein–protein docking and facilitates annotation of protein functions. Recent studies show that current sequence-based predictors of PBRs severely cross-predict residues that interact with other types of protein partners (e.g. RNA and DNA) as PBRs. Moreover, these methods are relatively slow, prohibiting genome-scale use. Results We propose a novel, accurate and fast sequence-based predictor of PBRs that minimizes the cross-predictions. Our SCRIBER (SeleCtive pRoteIn-Binding rEsidue pRedictor) method takes advantage of three innovations: comprehensive dataset that covers multiple types of binding residues, novel types of inputs that are relevant to the prediction of PBRs, and an architecture that is tailored to reduce the cross-predictions. The dataset includes complete protein chains and offers improved coverage of binding annotations that are transferred from multiple protein–protein complexes. We utilize innovative two-layer architecture where the first layer generates a prediction of protein-binding, RNA-binding, DNA-binding and small ligand-binding residues. The second layer re-predicts PBRs by reducing overlap between PBRs and the other types of binding residues produced in the first layer. Empirical tests on an independent test dataset reveal that SCRIBER significantly outperforms current predictors and that all three innovations contribute to its high predictive performance. SCRIBER reduces cross-predictions by between 41% and 69% and our conservative estimates show that it is at least 3 times faster. We provide putative PBRs produced by SCRIBER for the entire human proteome and use these results to hypothesize that about 14% of currently known human protein domains bind proteins. Availability and implementation SCRIBER webserver is available at http://biomine.cs.vcu.edu/servers/SCRIBER/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China.,Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
44
|
Hu G, Wu Z, Oldfield CJ, Wang C, Kurgan L. Quality assessment for the putative intrinsic disorder in proteins. Bioinformatics 2020; 35:1692-1700. [PMID: 30329008 DOI: 10.1093/bioinformatics/bty881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/19/2018] [Accepted: 10/15/2018] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION While putative intrinsic disorder is widely used, none of the predictors provides quality assessment (QA) scores. QA scores estimate the likelihood that predictions are correct at a residue level and have been applied in other bioinformatics areas. We recently reported that QA scores derived from putative disorder propensities perform relatively poorly for native disordered residues. Here we design and validate a general approach to construct QA predictors for disorder predictions. RESULTS The QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions) toolbox of methods accommodates a diverse set of ten disorder predictors. It builds upon several innovative design elements including use and scaling of selected physicochemical properties of the input sequence, post-processing of disorder propensity scores, and a feature selection that optimizes the predictive models to a specific disorder predictor. We empirically establish that each one of these elements contributes to the overall predictive performance of our tool and that QUARTER's outputs significantly outperform QA scores derived from the outputs generated the disorder predictors. The best performing QA scores for a single disorder predictor identify 13% of residues that are predicted with 98% precision. QA scores computed by combining results of the ten disorder predictors cover 40% of residues with 95% precision. Case studies are used to show how to interpret the QA scores. QA scores based on the high precision combined predictions are applied to analyze disorder in the human proteome. AVAILABILITY AND IMPLEMENTATION http://biomine.cs.vcu.edu/servers/QUARTER/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Gang Hu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People's Republic of China
| | - Zhonghua Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, People's Republic of China
| | | | - Chen Wang
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
45
|
Guo H, Ahn HK, Sklenar J, Huang J, Ma Y, Ding P, Menke FLH, Jones JDG. Phosphorylation-Regulated Activation of the Arabidopsis RRS1-R/RPS4 Immune Receptor Complex Reveals Two Distinct Effector Recognition Mechanisms. Cell Host Microbe 2020; 27:769-781.e6. [PMID: 32234500 DOI: 10.1016/j.chom.2020.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 12/26/2022]
Abstract
The Arabidopsis immune receptors RPS4 and RRS1 interact to co-confer responsiveness to bacterial effectors. The RRS1-R allele, with RPS4, responds to AvrRps4 and PopP2, whereas RRS1-S responds only to AvrRps4. Here, we show that the C terminus of RRS1-R but not RRS1-S is phosphorylated. Phosphorylation at Thr1214 in the WRKY domain maintains RRS1-R in its inactive state and also inhibits acetylation of RRS1-R by PopP2. PopP2 in turn catalyzes O-acetylation at the same site, thereby preventing its phosphorylation. Phosphorylation at other sites is required for PopP2 but not AvrRps4 responsiveness and facilitates the interaction of RRS1's C terminus with its TIR domain. Derepression of RRS1-R or RRS1-S involves effector-triggered proximity between their TIR domain and C termini. This effector-promoted interaction between these domains relieves inhibition of TIRRPS4 by TIRRRS1. Our data reveal effector-triggered and phosphorylation-regulated conformational changes within RRS1 that results in distinct modes of derepression of the complex by PopP2 and AvrRps4.
Collapse
Affiliation(s)
- Hailong Guo
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hee-Kyung Ahn
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jianhua Huang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yan Ma
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
46
|
Abstract
Functions of intrinsically disordered proteins do not require structure. Such structure-independent functionality has melted away the classic rigid "lock and key" representation of structure-function relationships in proteins, opening a new page in protein science, where molten keys operate on melted locks and where conformational flexibility and intrinsic disorder, structural plasticity and extreme malleability, multifunctionality and binding promiscuity represent a new-fangled reality. Analysis and understanding of this new reality require novel tools, and some of the techniques elaborated for the examination of intrinsically disordered protein functions are outlined in this review.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
47
|
Oldfield CJ, Fan X, Wang C, Dunker AK, Kurgan L. Computational Prediction of Intrinsic Disorder in Protein Sequences with the disCoP Meta-predictor. Methods Mol Biol 2020; 2141:21-35. [PMID: 32696351 DOI: 10.1007/978-1-0716-0524-0_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered proteins are either entirely disordered or contain disordered regions in their native state. These proteins and regions function without the prerequisite of a stable structure and were found to be abundant across all kingdoms of life. Experimental annotation of disorder lags behind the rapidly growing number of sequenced proteins, motivating the development of computational methods that predict disorder in protein sequences. DisCoP is a user-friendly webserver that provides accurate sequence-based prediction of protein disorder. It relies on meta-architecture in which the outputs generated by multiple disorder predictors are combined together to improve predictive performance. The architecture of disCoP is presented, and its accuracy relative to several other disorder predictors is briefly discussed. We describe usage of the web interface and explain how to access and read results generated by this computational tool. We also provide an example of prediction results and interpretation. The disCoP's webserver is publicly available at http://biomine.cs.vcu.edu/servers/disCoP/ .
Collapse
Affiliation(s)
| | - Xiao Fan
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Chen Wang
- Department of Medicine, Columbia University, New York, NY, USA
| | - A Keith Dunker
- Department of Biochemistry and Molecular Biology, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
48
|
Abstract
Intrinsically disordered regions (IDRs) are estimated to be highly abundant in nature. While only several thousand proteins are annotated with experimentally derived IDRs, computational methods can be used to predict IDRs for the millions of currently uncharacterized protein chains. Several dozen disorder predictors were developed over the last few decades. While some of these methods provide accurate predictions, unavoidably they also make some mistakes. Consequently, one of the challenges facing users of these methods is how to decide which predictions can be trusted and which are likely incorrect. This practical problem can be solved using quality assessment (QA) scores that predict correctness of the underlying (disorder) predictions at a residue level. We motivate and describe a first-of-its-kind toolbox of QA methods, QUARTER (QUality Assessment for pRotein inTrinsic disordEr pRedictions), which provides the scores for a diverse set of ten disorder predictors. QUARTER is available to the end users as a free and convenient webserver at http://biomine.cs.vcu.edu/servers/QUARTER/ . We briefly describe the predictive architecture of QUARTER and provide detailed instructions on how to use the webserver. We also explain how to interpret results produced by QUARTER with the help of a case study.
Collapse
|
49
|
Barik A, Katuwawala A, Hanson J, Paliwal K, Zhou Y, Kurgan L. DEPICTER: Intrinsic Disorder and Disorder Function Prediction Server. J Mol Biol 2019; 432:3379-3387. [PMID: 31870849 DOI: 10.1016/j.jmb.2019.12.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 01/06/2023]
Abstract
Computational predictions of the intrinsic disorder and its functions are instrumental to facilitate annotation for the millions of unannotated proteins. However, access to these predictors is fragmented and requires substantial effort to find them and to collect and combine their results. The DEPICTER (DisorderEd PredictIon CenTER) server provides first-of-its-kind centralized access to 10 popular disorder and disorder function predictions that cover protein and nucleic acids binding, linkers, and moonlighting regions. It automates the prediction process, runs user-selected methods on the server side, visualizes the results, and outputs all predictions in a consistent and easy-to-parse format. DEPICTER also includes two accurate consensus predictors of disorder and disordered protein binding. Empirical tests on an independent (low similarity) benchmark dataset reveal that the computational tools included in DEPICTER generate accurate predictions that are significantly better than the results secured using sequence alignment. The DEPICTER server is freely available at http://biomine.cs.vcu.edu/servers/DEPICTER/.
Collapse
Affiliation(s)
- Amita Barik
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA; Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jack Hanson
- Signal Processing Laboratory, Griffith University, Brisbane, QLD, 4122, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, Griffith University, Brisbane, QLD, 4122, Australia
| | - Yaoqi Zhou
- School of Information and Communication Technology, Griffith University, Gold Coast, QLD, 4222, Australia; Institute for Glycomics, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
50
|
Arbesú M, Pons M. Integrating disorder in globular multidomain proteins: Fuzzy sensors and the role of SH3 domains. Arch Biochem Biophys 2019; 677:108161. [PMID: 31678340 DOI: 10.1016/j.abb.2019.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Intrinsically disordered proteins represent about one third of eukaryotic proteins. An additional third correspond to proteins containing folded domains as well as large intrinsically disordered regions (IDR). While IDRs may represent functionally autonomous domains, in some instances it has become clear that they provide a new layer of regulation for the activity displayed by the folded domains. The sensitivity of the conformational ensembles defining the properties of IDR to small changes in the cellular environment and the capacity to modulate this response through post-translational modifications makes IDR ideal sensors enabling continuous, integrative responses to complex cellular inputs. Folded domains (FD), on the other hand, are ideal effectors, e.g. by catalyzing enzymatic reactions or participating in binary on/off switches. In this perspective review we discuss the possible role of intramolecular fuzzy complexes to integrate the very different dynamic scales of IDR and FD, inspired on the recent observations of such dynamic complexes in Src family kinases, and we explore the possible general role of the SH3 domains connecting IDRs and FD.
Collapse
Affiliation(s)
- Miguel Arbesú
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain.
| |
Collapse
|