1
|
Li P, Liu ZP. Structure-Based Prediction of lncRNA-Protein Interactions by Deep Learning. Methods Mol Biol 2025; 2883:363-376. [PMID: 39702717 DOI: 10.1007/978-1-0716-4290-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The interactions between long noncoding RNA (lncRNA) and protein play crucial roles in various biological processes. Computational methods are essential for predicting lncRNA-protein interactions and deciphering their mechanisms. In this chapter, we aim to introduce the fundamental framework for predicting lncRNA-protein interactions based on three-dimensional structure information. With the increasing availability of lncRNA and protein molecular tertiary structures, the feasibility of using deep learning methods for automatic representation and learning has become evident. This chapter outlines the key steps in predicting lncRNA-protein interactions using deep learning, including three common non-Euclidean data representations for lncRNA and proteins, as well as neural networks tailored to these specific data characteristics. We also highlight the advantages and challenges of structure-based prediction of lncRNA-protein interactions with geometric deep learning methods.
Collapse
Affiliation(s)
- Pengpai Li
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Qiao Y, Yang R, Liu Y, Chen J, Zhao L, Huo P, Wang Z, Bu D, Wu Y, Zhao Y. DeepFusion: A deep bimodal information fusion network for unraveling protein-RNA interactions using in vivo RNA structures. Comput Struct Biotechnol J 2024; 23:617-625. [PMID: 38274994 PMCID: PMC10808905 DOI: 10.1016/j.csbj.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) are key post-transcriptional regulators, and the malfunctions of RBP-RNA binding lead to diverse human diseases. However, prediction of RBP binding sites is largely based on RNA sequence features, whereas in vivo RNA structural features based on high-throughput sequencing are rarely incorporated. Here, we designed a deep bimodal information fusion network called DeepFusion for unraveling protein-RNA interactions by incorporating structural features derived from DMS-seq data. DeepFusion integrates two sub-models to extract local motif-like information and long-term context information. We show that DeepFusion performs best compared with other cutting-edge methods with only sequence inputs on two datasets. DeepFusion's performance is further improved with bimodal input after adding in vivo DMS-seq structural features. Furthermore, DeepFusion can be used for analyzing RNA degradation, demonstrating significantly different RBP-binding scores in genes with slow degradation rates versus those with rapid degradation rates. DeepFusion thus provides enhanced abilities for further analysis of functional RNAs. DeepFusion's code and data are available at http://bioinfo.org/deepfusion/.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Yang
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Chen
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Lianhe Zhao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Peipei Huo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihao Wang
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Horlacher M, Cantini G, Hesse J, Schinke P, Goedert N, Londhe S, Moyon L, Marsico A. A systematic benchmark of machine learning methods for protein-RNA interaction prediction. Brief Bioinform 2023; 24:bbad307. [PMID: 37635383 PMCID: PMC10516373 DOI: 10.1093/bib/bbad307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
RNA-binding proteins (RBPs) are central actors of RNA post-transcriptional regulation. Experiments to profile-binding sites of RBPs in vivo are limited to transcripts expressed in the experimental cell type, creating the need for computational methods to infer missing binding information. While numerous machine-learning based methods have been developed for this task, their use of heterogeneous training and evaluation datasets across different sets of RBPs and CLIP-seq protocols makes a direct comparison of their performance difficult. Here, we compile a set of 37 machine learning (primarily deep learning) methods for in vivo RBP-RNA interaction prediction and systematically benchmark a subset of 11 representative methods across hundreds of CLIP-seq datasets and RBPs. Using homogenized sample pre-processing and two negative-class sample generation strategies, we evaluate methods in terms of predictive performance and assess the impact of neural network architectures and input modalities on model performance. We believe that this study will not only enable researchers to choose the optimal prediction method for their tasks at hand, but also aid method developers in developing novel, high-performing methods by introducing a standardized framework for their evaluation.
Collapse
Affiliation(s)
- Marc Horlacher
- Computational Health Center, Helmholtz Center Munich, Germany
- School of Computation, Information and Technology, Technical University Munich (TUM), Germany
| | - Giulia Cantini
- Computational Health Center, Helmholtz Center Munich, Germany
| | - Julian Hesse
- Computational Health Center, Helmholtz Center Munich, Germany
| | - Patrick Schinke
- Computational Health Center, Helmholtz Center Munich, Germany
| | - Nicolas Goedert
- Computational Health Center, Helmholtz Center Munich, Germany
| | | | - Lambert Moyon
- Computational Health Center, Helmholtz Center Munich, Germany
| | | |
Collapse
|
4
|
García-Cárdenas JM, Armendáriz-Castillo I, García-Cárdenas N, Pesantez-Coronel D, López-Cortés A, Indacochea A, Guerrero S. Data mining identifies novel RNA-binding proteins involved in colon and rectal carcinomas. Front Cell Dev Biol 2023; 11:1088057. [PMID: 37384253 PMCID: PMC10293682 DOI: 10.3389/fcell.2023.1088057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/13/2023] [Indexed: 06/30/2023] Open
Abstract
Colorectal adenocarcinoma (COREAD) is the second most deadly cancer and third most frequently encountered malignancy worldwide. Despite efforts in molecular subtyping and subsequent personalized COREAD treatments, multidisciplinary evidence suggests separating COREAD into colon cancer (COAD) and rectal cancer (READ). This new perspective could improve diagnosis and treatment of both carcinomas. RNA-binding proteins (RBPs), as critical regulators of every hallmark of cancer, could fulfill the need to identify sensitive biomarkers for COAD and READ separately. To detect new RBPs involved in COAD and READ progression, here we used a multidata integration strategy to prioritize tumorigenic RBPs. We analyzed and integrated 1) RBPs genomic and transcriptomic alterations from 488 COAD and 155 READ patients, 2) ∼ 10,000 raw associations between RBPs and cancer genes, 3) ∼ 15,000 immunostainings, and 4) loss-of-function screens performed in 102 COREAD cell lines. Thus, we unraveled new putative roles of NOP56, RBM12, NAT10, FKBP1A, EMG1, and CSE1L in COAD and READ progression. Interestingly, FKBP1A and EMG1 have never been related with any of these carcinomas but presented tumorigenic features in other cancer types. Subsequent survival analyses highlighted the clinical relevance of FKBP1A, NOP56, and NAT10 mRNA expression to predict poor prognosis in COREAD and COAD patients. Further research should be performed to validate their clinical potential and to elucidate their molecular mechanisms underlying these malignancies.
Collapse
Affiliation(s)
- Jennyfer M. García-Cárdenas
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Isaac Armendáriz-Castillo
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
- Facultad de Ingenierías y Ciencias Aplicadas, Universidad Internacional SEK, Quito, Ecuador
| | | | - David Pesantez-Coronel
- Medical Oncology Department Hospital Clinic and Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Andrés López-Cortés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
| | - Alberto Indacochea
- Medical Oncology Department Hospital Clinic and Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Santiago Guerrero
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| |
Collapse
|
5
|
Wang X, Zhang M, Long C, Yao L, Zhu M. Self-Attention Based Neural Network for Predicting RNA-Protein Binding Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1469-1479. [PMID: 36067103 DOI: 10.1109/tcbb.2022.3204661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proteins binding to Ribonucleic Acid (RNA) inside cells are called RNA-binding proteins (RBP), which play a crucial role in gene regulation. The identification of RNA-protein binding sites helps to understand the function of RBP better. Although many computational methods have been developed to predict RNA-protein binding sites, their prediction accuracy on small sample datasets needs improvement. To overcome this limitation, we propose a novel model called SA-Net, which utilizes k-mer embedding to encode RNA sequences and a self-attention-based neural network to extract sequence features. K-mer embedding assists the model to discover significant subsequence fragments associated with binding sites. The self-attention mechanism captures contextual information from the entire input sequence globally, performing well in small sample sequence learning. Experimental results demonstrate that SA-Net attains state-of-the-art results on the RBP-24 dataset. We find that 4-mer embedding aids the model to achieve optimal performance. We also show that the self-attention network outperforms the commonly used CNN and CNN-BLSTM models in sequence feature extraction.
Collapse
|
6
|
Arora V, Sanguinetti G. De novo prediction of RNA-protein interactions with graph neural networks. RNA (NEW YORK, N.Y.) 2022; 28:1469-1480. [PMID: 36008134 PMCID: PMC9745830 DOI: 10.1261/rna.079365.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
RNA-binding proteins (RBPs) are key co- and post-transcriptional regulators of gene expression, playing a crucial role in many biological processes. Experimental methods like CLIP-seq have enabled the identification of transcriptome-wide RNA-protein interactions for select proteins; however, the time- and resource-intensive nature of these technologies call for the development of computational methods to complement their predictions. Here, we leverage recent, large-scale CLIP-seq experiments to construct a de novo predictor of RNA-protein interactions based on graph neural networks (GNN). We show that the GNN method allows us not only to predict missing links in an RNA-protein network, but to predict the entire complement of targets of previously unassayed proteins, and even to reconstruct the entire network of RNA-protein interactions in different conditions based on minimal information. Our results demonstrate the potential of modern machine learning methods to extract useful information on post-transcriptional regulation from large data sets.
Collapse
Affiliation(s)
- Viplove Arora
- Data Science, Department of Physics, SISSA, Trieste 34136, Italy
| | | |
Collapse
|
7
|
DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites. BMC Bioinformatics 2022; 23:257. [PMID: 35768792 PMCID: PMC9241231 DOI: 10.1186/s12859-022-04798-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Addressing the laborious nature of traditional biological experiments by using an efficient computational approach to analyze RNA-binding proteins (RBPs) binding sites has always been a challenging task. RBPs play a vital role in post-transcriptional control. Identification of RBPs binding sites is a key step for the anatomy of the essential mechanism of gene regulation by controlling splicing, stability, localization and translation. Traditional methods for detecting RBPs binding sites are time-consuming and computationally-intensive. Recently, the computational method has been incorporated in researches of RBPs. Nevertheless, lots of them not only rely on the sequence data of RNA but also need additional data, for example the secondary structural data of RNA, to improve the performance of prediction, which needs the pre-work to prepare the learnable representation of structural data. Results To reduce the dependency of those pre-work, in this paper, we introduce DeepPN, a deep parallel neural network that is constructed with a convolutional neural network (CNN) and graph convolutional network (GCN) for detecting RBPs binding sites. It includes a two-layer CNN and GCN in parallel to extract the hidden features, followed by a fully connected layer to make the prediction. DeepPN discriminates the RBP binding sites on learnable representation of RNA sequences, which only uses the sequence data without using other data, for example the secondary or tertiary structure data of RNA. DeepPN is evaluated on 24 datasets of RBPs binding sites with other state-of-the-art methods. The results show that the performance of DeepPN is comparable to the published methods. Conclusion The experimental results show that DeepPN can effectively capture potential hidden features in RBPs and use these features for effective prediction of binding sites.
Collapse
|
8
|
Shao M, Jiang L, Meng Z, Xu J. Computational Drug Repurposing Based on a Recommendation System and Drug-Drug Functional Pathway Similarity. Molecules 2022; 27:1404. [PMID: 35209193 PMCID: PMC8878172 DOI: 10.3390/molecules27041404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Drug repurposing identifies new clinical indications for existing drugs. It can be used to overcome common problems associated with cancers, such as heterogeneity and resistance to established therapies, by rapidly adapting known drugs for new treatment. In this study, we utilized a recommendation system learning model to prioritize candidate cancer drugs. We designed a drug-drug pathway functional similarity by integrating multiple genetic and epigenetic alterations such as gene expression, copy number variation (CNV), and DNA methylation. When compared with other similarities, such as SMILES chemical structures and drug targets based on the protein-protein interaction network, our approach provided better interpretable models capturing drug response mechanisms. Furthermore, our approach can achieve comparable accuracy when evaluated with other learning models based on large public datasets (CCLE and GDSC). A case study about the Erlotinib and OSI-906 (Linsitinib) indicated that they have a synergistic effect to reduce the growth rate of tumors, which is an alternative targeted therapy option for patients. Taken together, our computational method characterized drug response from the viewpoint of a multi-omics pathway and systematically predicted candidate cancer drugs with similar therapeutic effects.
Collapse
Affiliation(s)
- Mengting Shao
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou 515041, China
- Department of Computer Science, College of Computer Engineering and Applied Mathematics, Changsha University, Changsha 410005, China
| | - Leiming Jiang
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou 515041, China
| | - Zhigang Meng
- Department of Computer Science, College of Computer Engineering and Applied Mathematics, Changsha University, Changsha 410005, China
| | - Jianzhen Xu
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College (SUMC), Shantou 515041, China
| |
Collapse
|
9
|
Arora V, Sanguinetti G. Challenges for machine learning in RNA-protein interaction prediction. Stat Appl Genet Mol Biol 2022; 21:sagmb-2021-0087. [PMID: 35073469 DOI: 10.1515/sagmb-2021-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/02/2022] [Indexed: 11/15/2022]
Abstract
RNA-protein interactions have long being recognised as crucial regulators of gene expression. Recently, the development of scalable experimental techniques to measure these interactions has revolutionised the field, leading to the production of large-scale datasets which offer both opportunities and challenges for machine learning techniques. In this brief note, we will discuss some of the major stumbling blocks towards the use of machine learning in computational RNA biology, focusing specifically on the problem of predicting RNA-protein interactions from next-generation sequencing data.
Collapse
Affiliation(s)
- Viplove Arora
- Data Science, Department of Physics, International School for Advanced Studies (SISSA), Trieste 34136, Italy
| | - Guido Sanguinetti
- Data Science, Department of Physics, International School for Advanced Studies (SISSA), Trieste 34136, Italy
| |
Collapse
|
10
|
Niu M, Zou Q, Lin C. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach. PLoS Comput Biol 2022; 18:e1009798. [PMID: 35051187 PMCID: PMC8806072 DOI: 10.1371/journal.pcbi.1009798] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced formed by the reverse splicing mechanism. Increasing evidence shows that circular RNAs can directly bind to RNA-binding proteins (RBP) and play an important role in a variety of biological activities. The interactions between circRNAs and RBPs are key to comprehending the mechanism of posttranscriptional regulation. Accurately identifying binding sites is very useful for analyzing interactions. In past research, some predictors on the basis of machine learning (ML) have been presented, but prediction accuracy still needs to be ameliorated. Therefore, we present a novel calculation model, CRBPDL, which uses an Adaboost integrated deep hierarchical network to identify the binding sites of circular RNA-RBP. CRBPDL combines five different feature encoding schemes to encode the original RNA sequence, uses deep multiscale residual networks (MSRN) and bidirectional gating recurrent units (BiGRUs) to effectively learn high-level feature representations, it is sufficient to extract local and global context information at the same time. Additionally, a self-attention mechanism is employed to train the robustness of the CRBPDL. Ultimately, the Adaboost algorithm is applied to integrate deep learning (DL) model to improve prediction performance and reliability of the model. To verify the usefulness of CRBPDL, we compared the efficiency with state-of-the-art methods on 37 circular RNA data sets and 31 linear RNA data sets. Moreover, results display that CRBPDL is capable of performing universal, reliable, and robust. The code and data sets are obtainable at https://github.com/nmt315320/CRBPDL.git. More and more evidences show that circular RNA can directly bind to proteins and participate in countless different biological processes. The calculation method can quickly and accurately predict the binding site of circular RNA and RBP. In order to identify the interaction of circRNA with 37 different types of circRNA binding proteins, we developed an integrated deep learning network based on hierarchical network, called CRBPDL. It can effectively learn high-level feature representations. The performance of the model was verified through comparative experiments of different feature extraction algorithms, different deep learning models and classifier models. Moreover, the CRBPDL model was applied to 31 linear RNAs, and the effectiveness of our method was proved by comparison with the results of current excellent algorithms. It is expected that the CRBPDL model can effectively predict the binding site of circular RNA-RBP and provide reliable candidates for further biological experiments.
Collapse
Affiliation(s)
- Mengting Niu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
11
|
Marques-Pereira C, Pires M, Moreira IS. Discovery of Virus-Host interactions using bioinformatic tools. Methods Cell Biol 2022; 169:169-198. [PMID: 35623701 DOI: 10.1016/bs.mcb.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Yang S, Liu X, Ng RT. ProbeRating: a recommender system to infer binding profiles for nucleic acid-binding proteins. Bioinformatics 2021; 36:4797-4804. [PMID: 32573679 PMCID: PMC7750938 DOI: 10.1093/bioinformatics/btaa580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION The interaction between proteins and nucleic acids plays a crucial role in gene regulation and cell function. Determining the binding preferences of nucleic acid-binding proteins (NBPs), namely RNA-binding proteins (RBPs) and transcription factors (TFs), is the key to decipher the protein-nucleic acids interaction code. Today, available NBP binding data from in vivo or in vitro experiments are still limited, which leaves a large portion of NBPs uncovered. Unfortunately, existing computational methods that model the NBP binding preferences are mostly protein specific: they need the experimental data for a specific protein in interest, and thus only focus on experimentally characterized NBPs. The binding preferences of experimentally unexplored NBPs remain largely unknown. RESULTS Here, we introduce ProbeRating, a nucleic acid recommender system that utilizes techniques from deep learning and word embeddings of natural language processing. ProbeRating is developed to predict binding profiles for unexplored or poorly studied NBPs by exploiting their homologs NBPs which currently have available binding data. Requiring only sequence information as input, ProbeRating adapts FastText from Facebook AI Research to extract biological features. It then builds a neural network-based recommender system. We evaluate the performance of ProbeRating on two different tasks: one for RBP and one for TF. As a result, ProbeRating outperforms previous methods on both tasks. The results show that ProbeRating can be a useful tool to study the binding mechanism for the many NBPs that lack direct experimental evidence. and implementation. AVAILABILITY AND IMPLEMENTATION The source code is freely available at <https://github.com/syang11/ProbeRating>. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shu Yang
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Xiaoxi Liu
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama 230-0045, Japan
| | - Raymond T Ng
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
13
|
Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure. BMC Genomics 2020; 21:866. [PMID: 33334313 PMCID: PMC7745412 DOI: 10.1186/s12864-020-07239-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background RNA binding proteins (RBPs) play a vital role in post-transcriptional processes in all eukaryotes, such as splicing regulation, mRNA transport, and modulation of mRNA translation and decay. The identification of RBP binding sites is a crucial step in understanding the biological mechanism of post-transcriptional gene regulation. However, the determination of RBP binding sites on a large scale is a challenging task due to high cost of biochemical assays. Quite a number of studies have exploited machine learning methods to predict binding sites. Especially, deep learning is increasingly used in the bioinformatics field by virtue of its ability to learn generalized representations from DNA and protein sequences. Results In this paper, we implemented a novel deep neural network model, DeepRKE, which combines primary RNA sequence and secondary structure information to effectively predict RBP binding sites. Specifically, we used word embedding algorithm to extract features of RNA sequences and secondary structures, i.e., distributed representation of k-mers sequence rather than traditional one-hot encoding. The distributed representations are taken as input of convolutional neural networks (CNN) and bidirectional long-term short-term memory networks (BiLSTM) to identify RBP binding sites. Our results show that deepRKE outperforms existing counterpart methods on two large-scale benchmark datasets. Conclusions Our extensive experimental results show that DeepRKE is an efficacious tool for predicting RBP binding sites. The distributed representations of RNA sequences and secondary structures can effectively detect the latent relationship and similarity between k-mers, and thus improve the predictive performance. The source code of DeepRKE is available at https://github.com/youzhiliu/DeepRKE/. Supplementary Information The online version contains supplementary material available at (doi:10.1186/s12864-020-07239-w).
Collapse
|
14
|
Wang H, Wu P. Prediction of RNA-protein interactions using conjoint triad feature and chaos game representation. Bioengineered 2019; 9:242-251. [PMID: 30117758 PMCID: PMC6984769 DOI: 10.1080/21655979.2018.1470721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RNA-protein interactions (RPIs) play a very important role in a wide range of post-transcriptional regulations, and identifying whether a given RNA-protein pair can form interactions or not is a vital prerequisite for dissecting the regulatory mechanisms of functional RNAs. Currently, expensive and time-consuming biological assays can only determine a very small portion of all RPIs, which calls for computational approaches to help biologists efficiently and correctly find candidate RPIs. Here, we integrated a successful computing algorithm, conjoint triad feature (CTF), and another method, chaos game representation (CGR), for representing RNA-protein pairs and by doing so developed a prediction model based on these representations and random forest (RF) classifiers. When testing two benchmark datasets, RPI369 and RPI2241, the combined method (CTF+CGR) showed some superiority compared with four existing tools. Especially on RPI2241, the CTF+CGR method improved prediction accuracy (ACC) from 0.91 (the best record of all published works) to 0.95. When independently testing a newly constructed dataset, RPI1449, which only contained experimentally validated RPIs released between 2014 and 2016, our method still showed some generalization capability with an ACC of 0.75. Accordingly, we believe that our hybrid CTF+CGR method will be an important tool for predicting RPIs in the future.
Collapse
Affiliation(s)
- Hongchu Wang
- a Department of Mathematics , South China Normal University , Guangzhou P.R. of China
| | - Pengfei Wu
- b College of Informatics , Huazhong Agricultural University , Wuhan P.R. of China
| |
Collapse
|
15
|
Pan X, Fan YX, Jia J, Shen HB. Identifying RNA-binding proteins using multi-label deep learning. SCIENCE CHINA INFORMATION SCIENCES 2019; 62:19103. [DOI: 10.1007/s11432-018-9558-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/05/2018] [Accepted: 08/16/2018] [Indexed: 06/06/2025]
|