1
|
Xin Y, Sheng J, Zhang Q, Song Y, Wang L, Yang Z. A novel diagnosis method utilizing MDBO-SVM and imaging genetics for Alzheimer's disease. Comput Med Imaging Graph 2025; 123:102542. [PMID: 40311517 DOI: 10.1016/j.compmedimag.2025.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/19/2025] [Accepted: 03/26/2025] [Indexed: 05/03/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, yet its underlying mechanisms remain elusive. Early and accurate diagnosis is crucial for timely intervention and disease management. In this paper, a multi-strategy improved dung beetle optimizer (MDBO) was proposed to establish a new framework for AD diagnosis. The unique aspect of this algorithm lies in its integration of the Osprey Optimization Algorithm, Lévy flight, and adaptive t-distribution. This combination endows MDBO with superior global search capabilities and the ability to avoid local optima. Then, we presented a novel fitness function for integrating imaging genetics data. In experiments, MDBO demonstrated outstanding performance on the CEC2017 benchmark functions, proving its effectiveness in optimization problems. Furthermore, it was used to classify individuals with AD, mild cognitive impairment (MCI), and control normal (CN) using limited features. In the multi-classification of CN, MCI, and AD, the algorithm achieved excellent results, with an average accuracy of 81.7 % and a best accuracy of 92 %. Overall, the proposed MDBO algorithm provides a more comprehensive and efficient diagnostic tool, offering new possibilities for early intervention and disease progression control.
Collapse
Affiliation(s)
- Yu Xin
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Jinhua Sheng
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China.
| | - Qiao Zhang
- Beijing Hospital, Beijing 100730, China; National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yan Song
- Beijing Hospital, Beijing 100730, China; National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Luyun Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Ze Yang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
2
|
Peng W, Ma Y, Li C, Dai W, Fu X, Liu L, Liu L, Liu J. Fusion of brain imaging genetic data for alzheimer's disease diagnosis and causal factors identification using multi-stream attention mechanisms and graph convolutional networks. Neural Netw 2025; 184:107020. [PMID: 39721106 DOI: 10.1016/j.neunet.2024.107020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/03/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Correctly diagnosing Alzheimer's disease (AD) and identifying pathogenic brain regions and genes play a vital role in understanding the AD and developing effective prevention and treatment strategies. Recent works combine imaging and genetic data, and leverage the strengths of both modalities to achieve better classification results. In this work, we propose MCA-GCN, a Multi-stream Cross-Attention and Graph Convolutional Network-based classification method for AD patients. It first constructs a brain region-gene association network based on brain region fMRI time series and gene SNP data. Then it integrates the absolute and relative positions of the brain region time series to obtain a new brain region time series containing temporal information. Then long-range and local association features between brain regions and genes are sequentially aggregated by multi-stream cross-attention and graph convolutional networks. Finally, the learned brain region and gene features are input to the fully connected network to predict AD types. Experimental results on the ADNI dataset show that our model outperforms other methods in AD classification tasks. Moreover, MCA-GCN designed a multi-stage feature scoring process to extract high-risk genes and brain regions related to disease classification.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China.
| | - Yanhan Ma
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Chunshan Li
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology; Kunming 650500, PR China; Computer Technology Application Key Lab of Yunnan Province; Kunming 650500, PR China
| | - Jin Liu
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, PR China
| |
Collapse
|
3
|
Wu Q, Zhang Y, Huang X, Ma T, Hong LE, Kochunov P, Chen S. A multivariate to multivariate approach for voxel-wise genome-wide association analysis. Stat Med 2024; 43:3862-3880. [PMID: 38922949 PMCID: PMC11986643 DOI: 10.1002/sim.10101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/02/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024]
Abstract
The joint analysis of imaging-genetics data facilitates the systematic investigation of genetic effects on brain structures and functions with spatial specificity. We focus on voxel-wise genome-wide association analysis, which may involve trillions of single nucleotide polymorphism (SNP)-voxel pairs. We attempt to identify underlying organized association patterns of SNP-voxel pairs and understand the polygenic and pleiotropic networks on brain imaging traits. We propose a bi-clique graph structure (ie, a set of SNPs highly correlated with a cluster of voxels) for the systematic association pattern. Next, we develop computational strategies to detect latent SNP-voxel bi-cliques and an inference model for statistical testing. We further provide theoretical results to guarantee the accuracy of our computational algorithms and statistical inference. We validate our method by extensive simulation studies, and then apply it to the whole genome genetic and voxel-level white matter integrity data collected from 1052 participants of the human connectome project. The results demonstrate multiple genetic loci influencing white matter integrity measures on splenium and genu of the corpus callosum.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuan Zhang
- Department of Statistics, Ohio State University, Columbus, Ohio, USA
| | - Xiaoqi Huang
- Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, USA
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - L. Elliot Hong
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter Kochunov
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Faillace Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland, USA
- The University of Maryland Institute for Health Computing, University of Maryland, North Bethesda, USA
| |
Collapse
|
4
|
Cruciani F, Aparo A, Brusini L, Combi C, Storti SF, Giugno R, Menegaz G, Boscolo Galazzo I. Identifying the joint signature of brain atrophy and gene variant scores in Alzheimer's Disease. J Biomed Inform 2024; 149:104569. [PMID: 38104851 DOI: 10.1016/j.jbi.2023.104569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The joint modeling of genetic data and brain imaging information allows for determining the pathophysiological pathways of neurodegenerative diseases such as Alzheimer's disease (AD). This task has typically been approached using mass-univariate methods that rely on a complete set of Single Nucleotide Polymorphisms (SNPs) to assess their association with selected image-derived phenotypes (IDPs). However, such methods are prone to multiple comparisons bias and, most importantly, fail to account for potential cross-feature interactions, resulting in insufficient detection of significant associations. Ways to overcome these limitations while reducing the number of traits aim at conveying genetic information at the gene level and capturing the integrated genetic effects of a set of genetic variants, rather than looking at each SNP individually. Their associations with brain IDPs are still largely unexplored in the current literature, though they can uncover new potential genetic determinants for brain modulations in the AD continuum. In this work, we explored an explainable multivariate model to analyze the genetic basis of the grey matter modulations, relying on the AD Neuroimaging Initiative (ADNI) phase 3 dataset. Cortical thicknesses and subcortical volumes derived from T1-weighted Magnetic Resonance were considered to describe the imaging phenotypes. At the same time the genetic counterpart was represented by gene variant scores extracted by the Sequence Kernel Association Test (SKAT) filtering model. Moreover, transcriptomic analysis was carried on to assess the expression of the resulting genes in the main brain structures as a form of validation. Results highlighted meaningful genotype-phenotype interactionsas defined by three latent components showing a significant difference in the projection scores between patients and controls. Among the significant associations, the model highlighted EPHX1 and BCAS1 gene variant scores involved in neurodegenerative and myelination processes, hence relevant for AD. In particular, the first was associated with decreased subcortical volumes and the second with decreasedtemporal lobe thickness. Noteworthy, BCAS1 is particularly expressed in the dentate gyrus. Overall, the proposed approach allowed capturing genotype-phenotype interactions in a restricted study cohort that was confirmed by transcriptomic analysis, offering insights into the underlying mechanisms of neurodegeneration in AD in line with previous findings and suggesting new potential disease biomarkers.
Collapse
Affiliation(s)
- Federica Cruciani
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| | - Antonino Aparo
- Department of Computer Science, University of Verona, Verona, Italy
| | - Lorenza Brusini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Carlo Combi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Silvia F Storti
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Gloria Menegaz
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
5
|
Garrido-Martín D, Calvo M, Reverter F, Guigó R. A fast non-parametric test of association for multiple traits. Genome Biol 2023; 24:230. [PMID: 37828616 PMCID: PMC10571397 DOI: 10.1186/s13059-023-03076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The increasing availability of multidimensional phenotypic data in large cohorts of genotyped individuals requires efficient methods to identify genetic effects on multiple traits. Permutational multivariate analysis of variance (PERMANOVA) offers a powerful non-parametric approach. However, it relies on permutations to assess significance, which hinders the analysis of large datasets. Here, we derive the limiting null distribution of the PERMANOVA test statistic, providing a framework for the fast computation of asymptotic p values. Our asymptotic test presents controlled type I error and high power, often outperforming parametric approaches. We illustrate its applicability in the context of QTL mapping and GWAS.
Collapse
Affiliation(s)
- Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), Av. Diagonal 643, Barcelona, 08028, Spain.
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Catalonia, Spain.
| | - Miquel Calvo
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), Av. Diagonal 643, Barcelona, 08028, Spain
| | - Ferran Reverter
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona (UB), Av. Diagonal 643, Barcelona, 08028, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Beaulac C, Wu S, Gibson E, Miranda MF, Cao J, Rocha L, Beg MF, Nathoo FS. Neuroimaging feature extraction using a neural network classifier for imaging genetics. BMC Bioinformatics 2023; 24:271. [PMID: 37391692 DOI: 10.1186/s12859-023-05394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/21/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Dealing with the high dimension of both neuroimaging data and genetic data is a difficult problem in the association of genetic data to neuroimaging. In this article, we tackle the latter problem with an eye toward developing solutions that are relevant for disease prediction. Supported by a vast literature on the predictive power of neural networks, our proposed solution uses neural networks to extract from neuroimaging data features that are relevant for predicting Alzheimer's Disease (AD) for subsequent relation to genetics. The neuroimaging-genetic pipeline we propose is comprised of image processing, neuroimaging feature extraction and genetic association steps. We present a neural network classifier for extracting neuroimaging features that are related with the disease. The proposed method is data-driven and requires no expert advice or a priori selection of regions of interest. We further propose a multivariate regression with priors specified in the Bayesian framework that allows for group sparsity at multiple levels including SNPs and genes. RESULTS We find the features extracted with our proposed method are better predictors of AD than features used previously in the literature suggesting that single nucleotide polymorphisms (SNPs) related to the features extracted by our proposed method are also more relevant for AD. Our neuroimaging-genetic pipeline lead to the identification of some overlapping and more importantly some different SNPs when compared to those identified with previously used features. CONCLUSIONS The pipeline we propose combines machine learning and statistical methods to benefit from the strong predictive performance of blackbox models to extract relevant features while preserving the interpretation provided by Bayesian models for genetic association. Finally, we argue in favour of using automatic feature extraction, such as the method we propose, in addition to ROI or voxelwise analysis to find potentially novel disease-relevant SNPs that may not be detected when using ROIs or voxels alone.
Collapse
Affiliation(s)
- Cédric Beaulac
- School of Engineering Science, Simon Fraser University, Burnaby, Canada.
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada.
| | - Sidi Wu
- Department of Statistics and Actuarial Sciences, Simon Fraser University, Burnaby, Canada
| | - Erin Gibson
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Michelle F Miranda
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Jiguo Cao
- Department of Statistics and Actuarial Sciences, Simon Fraser University, Burnaby, Canada
| | - Leno Rocha
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| |
Collapse
|
7
|
Huang W, Tan K, Zhang Z, Hu J, Dong S. A Review of Fusion Methods for Omics and Imaging Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:74-93. [PMID: 35044920 DOI: 10.1109/tcbb.2022.3143900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of omics data and biomedical images has greatly advanced the progress of precision medicine in diagnosis, treatment, and prognosis. The fusion of omics and imaging data, i.e., omics-imaging fusion, offers a new strategy for understanding complex diseases. However, due to a variety of issues such as the limited number of samples, high dimensionality of features, and heterogeneity of different data types, efficiently learning complementary or associated discriminative fusion information from omics and imaging data remains a challenge. Recently, numerous machine learning methods have been proposed to alleviate these problems. In this review, from the perspective of fusion levels and fusion methods, we first provide an overview of preprocessing and feature extraction methods for omics and imaging data, and comprehensively analyze and summarize the basic forms and variations of commonly used and newly emerging fusion methods, along with their advantages, disadvantages and the applicable scope. We then describe public datasets and compare experimental results of various fusion methods on the ADNI and TCGA datasets. Finally, we discuss future prospects and highlight remaining challenges in the field.
Collapse
|
8
|
Zhao L, Xiao Y, Wen K, Liu B, Kong X. Multi-task manifold learning for partial label learning. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Deprez M, Moreira J, Sermesant M, Lorenzi M. Decoding Genetic Markers of Multiple Phenotypic Layers Through Biologically Constrained Genome-To-Phenome Bayesian Sparse Regression. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:830956. [PMID: 39086978 PMCID: PMC11285669 DOI: 10.3389/fmmed.2022.830956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/18/2022] [Indexed: 08/02/2024]
Abstract
The applicability of multivariate approaches for the joint analysis of genomics and phenomics information is currently limited by the lack of scalability, and by the difficulty of interpreting the related findings from a biological perspective. To tackle these limitations, we present Bayesian Genome-to-Phenome Sparse Regression (G2PSR), a novel multivariate regression method based on sparse SNP-gene constraints. The statistical framework of G2PSR is based on a Bayesian neural network, were constraints on SNPs-genes associations are integrated by incorporating a priori knowledge linking variants to their respective genes, to then reconstruct the phenotypic data in the output layer. Interpretability is promoted by inducing sparsity on the genes through variational dropout, allowing to estimate the uncertainty associated with each gene, and related SNPs, in the reconstruction task. Ultimately, G2PSR is conceived to prevent multiple testing correction and to assess the combined effect of SNPs, thus increasing the statistical power in detecting genome-to-phenome associations. The effectiveness of G2PSR was demonstrated on synthetic and real data, with respect to state-of-the-art methods based on group-wise sparsity constraints. The application on real data consisted in an imaging-genetics analysis on the Alzheimer's Disease Neuroimaging Initiative data, relating SNPs from more than 3,500 genes to clinical and multi-variate brain volumetric information. The experimental results show that our method can provide accurate selection of relevant genes in dataset with large SNPs-to-samples ratio, thus overcoming the main limitations of current genome-to-phenome association methods.
Collapse
Affiliation(s)
- Marie Deprez
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| | - Julien Moreira
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| | - Maxime Sermesant
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| | - Marco Lorenzi
- University of Côte d’Azur, Nice, France
- INRIA, Epione Project-Team, Valbonne, France
| |
Collapse
|
10
|
Forouzannezhad P, Maes D, Hippe DS, Thammasorn P, Iranzad R, Han J, Duan C, Liu X, Wang S, Chaovalitwongse WA, Zeng J, Bowen SR. Multitask Learning Radiomics on Longitudinal Imaging to Predict Survival Outcomes following Risk-Adaptive Chemoradiation for Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:1228. [PMID: 35267535 PMCID: PMC8909466 DOI: 10.3390/cancers14051228] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Medical imaging provides quantitative and spatial information to evaluate treatment response in the management of patients with non-small cell lung cancer (NSCLC). High throughput extraction of radiomic features on these images can potentially phenotype tumors non-invasively and support risk stratification based on survival outcome prediction. The prognostic value of radiomics from different imaging modalities and time points prior to and during chemoradiation therapy of NSCLC, relative to conventional imaging biomarker or delta radiomics models, remains uncharacterized. We investigated the utility of multitask learning of multi-time point radiomic features, as opposed to single-task learning, for improving survival outcome prediction relative to conventional clinical imaging feature model benchmarks. Survival outcomes were prospectively collected for 45 patients with unresectable NSCLC enrolled on the FLARE-RT phase II trial of risk-adaptive chemoradiation and optional consolidation PD-L1 checkpoint blockade (NCT02773238). FDG-PET, CT, and perfusion SPECT imaging pretreatment and week 3 mid-treatment was performed and 110 IBSI-compliant pyradiomics shape-/intensity-/texture-based features from the metabolic tumor volume were extracted. Outcome modeling consisted of a fused Laplacian sparse group LASSO with component-wise gradient boosting survival regression in a multitask learning framework. Testing performance under stratified 10-fold cross-validation was evaluated for multitask learning radiomics of different imaging modalities and time points. Multitask learning models were benchmarked against conventional clinical imaging and delta radiomics models and evaluated with the concordance index (c-index) and index of prediction accuracy (IPA). FDG-PET radiomics had higher prognostic value for overall survival in test folds (c-index 0.71 [0.67, 0.75]) than CT radiomics (c-index 0.64 [0.60, 0.71]) or perfusion SPECT radiomics (c-index 0.60 [0.57, 0.63]). Multitask learning of pre-/mid-treatment FDG-PET radiomics (c-index 0.71 [0.67, 0.75]) outperformed benchmark clinical imaging (c-index 0.65 [0.59, 0.71]) and FDG-PET delta radiomics (c-index 0.52 [0.48, 0.58]) models. Similarly, the IPA for multitask learning FDG-PET radiomics (30%) was higher than clinical imaging (26%) and delta radiomics (15%) models. Radiomics models performed consistently under different voxel resampling conditions. Multitask learning radiomics for outcome modeling provides a clinical decision support platform that leverages longitudinal imaging information. This framework can reveal the relative importance of different imaging modalities and time points when designing risk-adaptive cancer treatment strategies.
Collapse
Affiliation(s)
- Parisa Forouzannezhad
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA 98195, USA; (P.F.); (D.M.); (J.Z.)
| | - Dominic Maes
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA 98195, USA; (P.F.); (D.M.); (J.Z.)
| | - Daniel S. Hippe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Phawis Thammasorn
- Department of Industrial Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (P.T.); (R.I.); (X.L.); (W.A.C.)
| | - Reza Iranzad
- Department of Industrial Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (P.T.); (R.I.); (X.L.); (W.A.C.)
| | - Jie Han
- Department of Industrial, Manufacturing, and System Engineering, University of Texas, Arlington, TX 76019, USA; (J.H.); (S.W.)
| | - Chunyan Duan
- Department of Mechanical Engineering, Tongji University, Shanghai 200092, China;
| | - Xiao Liu
- Department of Industrial Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (P.T.); (R.I.); (X.L.); (W.A.C.)
| | - Shouyi Wang
- Department of Industrial, Manufacturing, and System Engineering, University of Texas, Arlington, TX 76019, USA; (J.H.); (S.W.)
| | - W. Art Chaovalitwongse
- Department of Industrial Engineering, University of Arkansas, Fayetteville, AR 72701, USA; (P.T.); (R.I.); (X.L.); (W.A.C.)
| | - Jing Zeng
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA 98195, USA; (P.F.); (D.M.); (J.Z.)
| | - Stephen R. Bowen
- Department of Radiation Oncology, School of Medicine, University of Washington, Seattle, WA 98195, USA; (P.F.); (D.M.); (J.Z.)
- Department of Radiology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Brown DA, McMahan CS, Shinohara RT, Linn KA, Alzheimer’s Disease Neuroimaging Initiative. Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging. J Am Stat Assoc 2022; 117:547-560. [PMID: 36338275 PMCID: PMC9632253 DOI: 10.1080/01621459.2021.2014854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease is a neurodegenerative condition that accelerates cognitive decline relative to normal aging. It is of critical scientific importance to gain a better understanding of early disease mechanisms in the brain to facilitate effective, targeted therapies. The volume of the hippocampus is often used in diagnosis and monitoring of the disease. Measuring this volume via neuroimaging is difficult since each hippocampus must either be manually identified or automatically delineated, a task referred to as segmentation. Automatic hippocampal segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each hippocampus is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms employ voting procedures with voting weights assigned directly or estimated via optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. Our results suggest that incorporating tissue classification (e.g, gray matter) into the label fusion procedure can greatly improve segmentation when relatively homogeneous, healthy brains are used as atlases for diseased brains. The fully Bayesian approach also produces meaningful uncertainty measures about hippocampal volumes, information which can be leveraged to detect significant, scientifically meaningful differences between healthy and diseased populations, improving the potential for early detection and tracking of the disease.
Collapse
Affiliation(s)
- D. Andrew Brown
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Christopher S. McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634, USA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, and Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin A. Linn
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, and Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
12
|
Opoku EA, Ahmed SE, Nathoo FS. Sparse Estimation Strategies in Linear Mixed Effect Models for High-Dimensional Data Application. ENTROPY 2021; 23:e23101348. [PMID: 34682072 PMCID: PMC8534815 DOI: 10.3390/e23101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022]
Abstract
In a host of business applications, biomedical and epidemiological studies, the problem of multicollinearity among predictor variables is a frequent issue in longitudinal data analysis for linear mixed models (LMM). We consider an efficient estimation strategy for high-dimensional data application, where the dimensions of the parameters are larger than the number of observations. In this paper, we are interested in estimating the fixed effects parameters of the LMM when it is assumed that some prior information is available in the form of linear restrictions on the parameters. We propose the pretest and shrinkage estimation strategies using the ridge full model as the base estimator. We establish the asymptotic distributional bias and risks of the suggested estimators and investigate their relative performance with respect to the ridge full model estimator. Furthermore, we compare the numerical performance of the LASSO-type estimators with the pretest and shrinkage ridge estimators. The methodology is investigated using simulation studies and then demonstrated on an application exploring how effective brain connectivity in the default mode network (DMN) may be related to genetics within the context of Alzheimer's disease.
Collapse
Affiliation(s)
- Eugene A. Opoku
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence:
| | - Syed Ejaz Ahmed
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Farouk S. Nathoo
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
13
|
Vilor-Tejedor N, Garrido-Martín D, Rodriguez-Fernandez B, Lamballais S, Guigó R, Gispert JD. Multivariate Analysis and Modelling of multiple Brain endOphenotypes: Let's MAMBO! Comput Struct Biotechnol J 2021; 19:5800-5810. [PMID: 34765095 PMCID: PMC8567328 DOI: 10.1016/j.csbj.2021.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
Imaging genetic studies aim to test how genetic information influences brain structure and function by combining neuroimaging-based brain features and genetic data from the same individual. Most studies focus on individual correlation and association tests between genetic variants and a single measurement of the brain. Despite the great success of univariate approaches, given the capacity of neuroimaging methods to provide a multiplicity of cerebral phenotypes, the development and application of multivariate methods become crucial. In this article, we review novel methods and strategies focused on the analysis of multiple phenotypes and genetic data. We also discuss relevant aspects of multi-trait modelling in the context of neuroimaging data.
Collapse
Affiliation(s)
- Natalia Vilor-Tejedor
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Diego Garrido-Martín
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | | | - Sander Lamballais
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| |
Collapse
|
14
|
Li X, Lin Y, Meng X, Qiu Y, Hu B. An L 0 Regularization Method for Imaging Genetics and Whole Genome Association Analysis on Alzheimer's Disease. IEEE J Biomed Health Inform 2021; 25:3677-3684. [PMID: 34181562 DOI: 10.1109/jbhi.2021.3093027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the neuroimaging measures build a bridge between genetic variants and disease phenotypes, an assessment of single nucleotide variants changes in brain structure and their clinically influence on the progression of Alzheimer's disease remain largely preliminary. Note that each variant has very weak correlation signal to neuroimaging measures or Alzheimer's disease phenotypes. Therefore, traditional sparse regression-based image genetics approaches confront with unresolvable features, relative high regression error or inapplicability of high-dimensional data. Adopting an [Formula: see text] regularization method, we significantly elevate the regression accuracy of imaging genetics compared with group-sparse multitask regression method. With further analysis on the simulation results, we conclude that multiple regression tasks model may be unsuitable for image genetics. In addition, we carried out a whole genome association analysis between genetic variants (about 388 million loci) and phenotypes (cognition normal, mild cognitive impairment and Alzheimer's disease) with using the [Formula: see text] regularization method. After annotating the effect of all variants by Ensembl Variant Effect Predictor (VEP), our method locates 33 missense variants which can explain 40% phenotype variance. Then, we mapped each missense variant to the nearest gene and carried out pathway enrichment analysis. The Notch signaling pathway and Apoptosis pathway have been reported to be related to the formation of Alzheimer's disease.
Collapse
|
15
|
Zhang A, Fang J, Hu W, Calhoun VD, Wang YP. A Latent Gaussian Copula Model for Mixed Data Analysis in Brain Imaging Genetics. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1350-1360. [PMID: 31689199 PMCID: PMC7756188 DOI: 10.1109/tcbb.2019.2950904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent advances in imaging genetics make it possible to combine different types of data including medical images like functional magnetic resonance imaging (fMRI) and genetic data like single nucleotide polymorphisms (SNPs) for comprehensive diagnosis of mental disorders. Understanding complex interactions among these heterogeneous data may give rise to a new perspective, while at the same time demand statistical models for their integration. Various graphical models have been proposed for the study of interaction or association networks with continuous, binary, and count data as well as the mixture of them. However, limited efforts have been made for the multinomial case, for instance, SNP data. Our goal is therefore to fill the void by developing a graphical model for the integration of fMRI image and SNP data, which can provide deeper understanding of the unknown neurogenetic mechanism. In this article, we propose a latent Gaussian copula model for mixed data containing multinomial components. We assume that the discrete variable is obtained by discretizing a latent (unobserved) continuous variable and then create a semi-rank based estimator of the graph structure. The simulation results demonstrate that the proposed latent correlation has more steady and accurate performance than several existing methods in detecting graph structure. When applying to a real schizophrenia data consisting of SNP array and fMRI image collected by the Mind Clinical Imaging Consortium (MCIC), the proposed method reveals a set of distinct SNP-brain associations, which are verified to be biologically significant. The proposed model is statistically promising in handling mixed types of data including multinomial components, which can find widespread applications. To promote reproducible research, the R code is available at https://github.com/Aiying0512/LGCM.
Collapse
|
16
|
Song Y, Ge S, Cao J, Wang L, Nathoo FS. A Bayesian spatial model for imaging genetics. Biometrics 2021; 78:742-753. [PMID: 33765325 DOI: 10.1111/biom.13460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
We develop a Bayesian bivariate spatial model for multivariate regression analysis applicable to studies examining the influence of genetic variation on brain structure. Our model is motivated by an imaging genetics study of the Alzheimer's Disease Neuroimaging Initiative (ADNI), where the objective is to examine the association between images of volumetric and cortical thickness values summarizing the structure of the brain as measured by magnetic resonance imaging (MRI) and a set of 486 single nucleotide polymorphism (SNPs) from 33 Alzheimer's disease (AD) candidate genes obtained from 632 subjects. A bivariate spatial process model is developed to accommodate the correlation structures typically seen in structural brain imaging data. First, we allow for spatial correlation on a graph structure in the imaging phenotypes obtained from a neighborhood matrix for measures on the same hemisphere of the brain. Second, we allow for correlation in the same measures obtained from different hemispheres (left/right) of the brain. We develop a mean-field variational Bayes algorithm and a Gibbs sampling algorithm to fit the model. We also incorporate Bayesian false discovery rate (FDR) procedures to select SNPs. We implement the methodology in a new release of the R package bgsmtr. We show that the new spatial model demonstrates superior performance over a standard model in our application. Data used in the preparation of this article were obtained from the ADNI database (https://adni.loni.usc.edu).
Collapse
Affiliation(s)
- Yin Song
- Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada
| | - Shufei Ge
- Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China
| | - Jiguo Cao
- Statistics and Actuarial Science, Simon Fraser University, British Columbia, Canada
| | - Liangliang Wang
- Statistics and Actuarial Science, Simon Fraser University, British Columbia, Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada
| |
Collapse
|
17
|
Jin R, Tan A. Fast Markov Chain Monte Carlo for High-Dimensional Bayesian Regression Models With Shrinkage Priors. J Comput Graph Stat 2021. [DOI: 10.1080/10618600.2020.1864383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Rui Jin
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA
| | - Aixin Tan
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA
| |
Collapse
|
18
|
Zhou J, Qiu Y, Chen S, Liu L, Liao H, Chen H, Lv S, Li X. A Novel Three-Stage Framework for Association Analysis Between SNPs and Brain Regions. Front Genet 2020; 11:572350. [PMID: 33193677 PMCID: PMC7542238 DOI: 10.3389/fgene.2020.572350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Motivation: At present, a number of correlation analysis methods between SNPs and ROIs have been devised to explore the pathogenic mechanism of Alzheimer's disease. However, some of the deficiencies inherent in these methods, including lack of statistical efficacy and biological meaning. This study aims at addressing issues: insufficient correlation by previous methods (relative high regression error) and the lack of biological meaning in association analysis. Results: In this paper, a novel three-stage SNPs and ROIs correlation analysis framework is proposed. Firstly, clustering algorithm is applied to remove the potential linkage unbalanced structure of two SNPs. Then, the group sparse model is used to introduce prior information such as gene structure and linkage unbalanced structure to select feature SNPs. After the above steps, each SNP has a weight vector corresponding to each ROI, and the importance of SNPs can be judged according to the weights in the feature vector, and then the feature SNPs can be selected. Finally, for the selected feature SNPS, a support vector machine regression model is used to implement the prediction of the ROIs phenotype values. The experimental results under multiple performance measures show that the proposed method has better accuracy than other methods.
Collapse
Affiliation(s)
- Juan Zhou
- School of Software, East China Jiaotong University, Nanchang, China
| | - Yangping Qiu
- School of Software, East China Jiaotong University, Nanchang, China
| | - Shuo Chen
- School of Software, East China Jiaotong University, Nanchang, China
| | - Liyue Liu
- School of Software, East China Jiaotong University, Nanchang, China
| | - Huifa Liao
- School of Software, East China Jiaotong University, Nanchang, China
| | - Hongli Chen
- School of Software, East China Jiaotong University, Nanchang, China
| | - Shanguo Lv
- School of Software, East China Jiaotong University, Nanchang, China
| | - Xiong Li
- School of Software, East China Jiaotong University, Nanchang, China
| |
Collapse
|
19
|
Nie Y, Opoku E, Yasmin L, Song Y, Wang J, Wu S, Scarapicchia V, Gawryluk J, Wang L, Cao J, Nathoo FS. Spectral dynamic causal modelling of resting-state fMRI: an exploratory study relating effective brain connectivity in the default mode network to genetics. Stat Appl Genet Mol Biol 2020; 19:/j/sagmb.ahead-of-print/sagmb-2019-0058/sagmb-2019-0058.xml. [PMID: 32866136 DOI: 10.1515/sagmb-2019-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/27/2020] [Indexed: 11/15/2022]
Abstract
We conduct an imaging genetics study to explore how effective brain connectivity in the default mode network (DMN) may be related to genetics within the context of Alzheimer's disease and mild cognitive impairment. We develop an analysis of longitudinal resting-state functional magnetic resonance imaging (rs-fMRI) and genetic data obtained from a sample of 111 subjects with a total of 319 rs-fMRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. A Dynamic Causal Model (DCM) is fit to the rs-fMRI scans to estimate effective brain connectivity within the DMN and related to a set of single nucleotide polymorphisms (SNPs) contained in an empirical disease-constrained set which is obtained out-of-sample from 663 ADNI subjects having only genome-wide data. We relate longitudinal effective brain connectivity estimated using spectral DCM to SNPs using both linear mixed effect (LME) models as well as function-on-scalar regression (FSR). In both cases we implement a parametric bootstrap for testing SNP coefficients and make comparisons with p-values obtained from asymptotic null distributions. In both networks at an initial q-value threshold of 0.1 no effects are found. We report on exploratory patterns of associations with relatively high ranks that exhibit stability to the differing assumptions made by both FSR and LME.
Collapse
Affiliation(s)
- Yunlong Nie
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Eugene Opoku
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Laila Yasmin
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Yin Song
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| | - Jie Wang
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Sidi Wu
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Vanessa Scarapicchia
- Department of Psychology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2Canada
| | - Jodie Gawryluk
- Department of Psychology, University of Victoria, P. O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2Canada
| | - Liangliang Wang
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Jiguo Cao
- Department of Statistics and Actuarial Science, Simon Fraser University, Room SC K10545 8888 University Drive, Burnaby, BCV5A 1S6,Canada
| | - Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria, Victoria, Canada
| |
Collapse
|
20
|
Ning B, Jeong S, Ghosal S. Bayesian linear regression for multivariate responses under group sparsity. BERNOULLI 2020. [DOI: 10.3150/20-bej1198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Feng J, Zhang SW, Chen L. Identification of Alzheimer's disease based on wavelet transformation energy feature of the structural MRI image and NN classifier. Artif Intell Med 2020; 108:101940. [DOI: 10.1016/j.artmed.2020.101940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
22
|
Cao H, Zhou J, Schwarz E. RMTL: an R library for multi-task learning. Bioinformatics 2020; 35:1797-1798. [PMID: 30256897 DOI: 10.1093/bioinformatics/bty831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/20/2018] [Accepted: 09/25/2018] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Multi-task learning (MTL) is a machine learning technique for simultaneous learning of multiple related classification or regression tasks. Despite its increasing popularity, MTL algorithms are currently not available in the widely used software environment R, creating a bottleneck for their application in biomedical research. RESULTS We developed an efficient, easy-to-use R library for MTL (www.r-project.org) comprising 10 algorithms applicable for regression, classification, joint predictor selection, task clustering, low-rank learning and incorporation of biological networks. We demonstrate the utility of the algorithms using simulated data. AVAILABILITY AND IMPLEMENTATION The RMTL package is an open source R package and is freely available at https://github.com/transbioZI/RMTL. RMTL will also be available on cran.r-project.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Han Cao
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jiayu Zhou
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
23
|
Discriminative margin-sensitive autoencoder for collective multi-view disease analysis. Neural Netw 2020; 123:94-107. [DOI: 10.1016/j.neunet.2019.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/18/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
|
24
|
|
25
|
Tabarestani S, Aghili M, Eslami M, Cabrerizo M, Barreto A, Rishe N, Curiel RE, Loewenstein D, Duara R, Adjouadi M. A distributed multitask multimodal approach for the prediction of Alzheimer's disease in a longitudinal study. Neuroimage 2020; 206:116317. [PMID: 31678502 PMCID: PMC11167621 DOI: 10.1016/j.neuroimage.2019.116317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 01/19/2023] Open
Abstract
Predicting the progression of Alzheimer's Disease (AD) has been held back for decades due to the lack of sufficient longitudinal data required for the development of novel machine learning algorithms. This study proposes a novel machine learning algorithm for predicting the progression of Alzheimer's disease using a distributed multimodal, multitask learning method. More specifically, each individual task is defined as a regression model, which predicts cognitive scores at a single time point. Since the prediction tasks for multiple intervals are related to each other in chronological order, multitask regression models have been developed to track the relationship between subsequent tasks. Furthermore, since subjects have various combinations of recording modalities together with other genetic, neuropsychological and demographic risk factors, special attention is given to the fact that each modality may experience a specific sparsity pattern. The model is hence generalized by exploiting multiple individual multitask regression coefficient matrices for each modality. The outcome for each independent modality-specific learner is then integrated with complementary information, known as risk factor parameters, revealing the most prevalent trends of the multimodal data. This new feature space is then used as input to the gradient boosting kernel in search for a more accurate prediction. This proposed model not only captures the complex relationships between the different feature representations, but it also ignores any unrelated information which might skew the regression coefficients. Comparative assessments are made between the performance of the proposed method with several other well-established methods using different multimodal platforms. The results indicate that by capturing the interrelatedness between the different modalities and extracting only relevant information in the data, even in an incomplete longitudinal dataset, will yield minimized prediction errors.
Collapse
Affiliation(s)
- Solale Tabarestani
- Center for Advanced Technology and Education (CATE), Florida International University, Miami, FL, USA; Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA.
| | - Maryamossadat Aghili
- Center for Advanced Technology and Education (CATE), Florida International University, Miami, FL, USA; School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Mohammad Eslami
- Center for Advanced Technology and Education (CATE), Florida International University, Miami, FL, USA; Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Mercedes Cabrerizo
- Center for Advanced Technology and Education (CATE), Florida International University, Miami, FL, USA; Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Armando Barreto
- Center for Advanced Technology and Education (CATE), Florida International University, Miami, FL, USA; Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA
| | - Naphtali Rishe
- School of Computing and Information Sciences, Florida International University, Miami, FL, USA
| | - Rosie E Curiel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA; 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA
| | - David Loewenstein
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA; 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Ranjan Duara
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA; Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Malek Adjouadi
- Center for Advanced Technology and Education (CATE), Florida International University, Miami, FL, USA; Department of Electrical and Computer Engineering, Florida International University, Miami, FL, USA; 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|
27
|
Huang M, Yu Y, Yang W, Feng Q, Alzheimer’s Disease Neuroimaging Initiative. Incorporating spatial-anatomical similarity into the VGWAS framework for AD biomarker detection. Bioinformatics 2019; 35:5271-5280. [PMID: 31095298 PMCID: PMC6954655 DOI: 10.1093/bioinformatics/btz401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/03/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The detection of potential biomarkers of Alzheimer's disease (AD) is crucial for its early prediction, diagnosis and treatment. Voxel-wise genome-wide association study (VGWAS) is a commonly used method in imaging genomics and usually applied to detect AD biomarkers in imaging and genetic data. However, existing VGWAS methods entail large computational cost and disregard spatial correlations within imaging data. A novel method is proposed to solve these issues. RESULTS We introduce a novel method to incorporate spatial correlations into a VGWAS framework for the detection of potential AD biomarkers. To consider the characteristics of AD, we first present a modification of a simple linear iterative clustering method for spatial grouping in an anatomically meaningful manner. Second, we propose a spatial-anatomical similarity matrix to incorporate correlations among voxels. Finally, we detect the potential AD biomarkers from imaging and genetic data by using a fast VGWAS method and test our method on 708 subjects obtained from an Alzheimer's Disease Neuroimaging Initiative dataset. Results show that our method can successfully detect some new risk genes and clusters of AD. The detected imaging and genetic biomarkers are used as predictors to classify AD/normal control subjects, and a high accuracy of AD/normal control classification is achieved. To the best of our knowledge, the association between imaging and genetic data has yet to be systematically investigated while building statistical models for classifying AD subjects to create a link between imaging genetics and AD. Therefore, our method may provide a new way to gain insights into the underlying pathological mechanism of AD. AVAILABILITY AND IMPLEMENTATION https://github.com/Meiyan88/SASM-VGWAS.
Collapse
Affiliation(s)
- Meiyan Huang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Yuwei Yu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qianjin Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | | |
Collapse
|
28
|
Aksman LM, Scelsi MA, Marquand AF, Alexander DC, Ourselin S, Altmann A, for ADNI. Modeling longitudinal imaging biomarkers with parametric Bayesian multi-task learning. Hum Brain Mapp 2019; 40:3982-4000. [PMID: 31168892 PMCID: PMC6679792 DOI: 10.1002/hbm.24682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 01/09/2023] Open
Abstract
Longitudinal imaging biomarkers are invaluable for understanding the course of neurodegeneration, promising the ability to track disease progression and to detect disease earlier than cross-sectional biomarkers. To properly realize their potential, biomarker trajectory models must be robust to both under-sampling and measurement errors and should be able to integrate multi-modal information to improve trajectory inference and prediction. Here we present a parametric Bayesian multi-task learning based approach to modeling univariate trajectories across subjects that addresses these criteria. Our approach learns multiple subjects' trajectories within a single model that allows for different types of information sharing, that is, coupling, across subjects. It optimizes a combination of uncoupled, fully coupled and kernel coupled models. Kernel-based coupling allows linking subjects' trajectories based on one or more biomarker measures. We demonstrate this using Alzheimer's Disease Neuroimaging Initiative (ADNI) data, where we model longitudinal trajectories of MRI-derived cortical volumes in neurodegeneration, with coupling based on APOE genotype, cerebrospinal fluid (CSF) and amyloid PET-based biomarkers. In addition to detecting established disease effects, we detect disease related changes within the insula that have not received much attention within the literature. Due to its sensitivity in detecting disease effects, its competitive predictive performance and its ability to learn the optimal parameter covariance from data rather than choosing a specific set of random and fixed effects a priori, we propose that our model can be used in place of or in addition to linear mixed effects models when modeling biomarker trajectories. A software implementation of the method is publicly available.
Collapse
Affiliation(s)
- Leon M. Aksman
- Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Marzia A. Scelsi
- Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Andre F. Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | | | - Sebastien Ourselin
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- School of Biomedical Engineering and Imaging SciencesSt Thomas' Hospital, King's College LondonLondonUK
| | - Andre Altmann
- Centre for Medical Image ComputingUniversity College LondonLondonUK
| | | |
Collapse
|
29
|
Nathoo FS, Kong L, Zhu H. A Review of Statistical Methods in Imaging Genetics. CAN J STAT 2019; 47:108-131. [PMID: 31274952 PMCID: PMC6605768 DOI: 10.1002/cjs.11487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/08/2018] [Indexed: 12/24/2022]
Abstract
With the rapid growth of modern technology, many biomedical studies are being conducted to collect massive datasets with volumes of multi-modality imaging, genetic, neurocognitive, and clinical information from increasingly large cohorts. Simultaneously extracting and integrating rich and diverse heterogeneous information in neuroimaging and/or genomics from these big datasets could transform our understanding of how genetic variants impact brain structure and function, cognitive function, and brain-related disease risk across the lifespan. Such understanding is critical for diagnosis, prevention, and treatment of numerous complex brain-related disorders (e.g., schizophrenia and Alzheimer's disease). However, the development of analytical methods for the joint analysis of both high-dimensional imaging phenotypes and high-dimensional genetic data, a big data squared (BD2) problem, presents major computational and theoretical challenges for existing analytical methods. Besides the high-dimensional nature of BD2, various neuroimaging measures often exhibit strong spatial smoothness and dependence and genetic markers may have a natural dependence structure arising from linkage disequilibrium. We review some recent developments of various statistical techniques for imaging genetics, including massive univariate and voxel-wise approaches, reduced rank regression, mixture models, and group sparse multi-task regression. By doing so, we hope that this review may encourage others in the statistical community to enter into this new and exciting field of research.
Collapse
Affiliation(s)
- Farouk S Nathoo
- Department of Mathematics and Statistics, University of Victoria
| | - Linglong Kong
- Department of Mathematical and Statistical Sciences, University of Alberta
| | - Hongtu Zhu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
30
|
Zhu X, Zhang W, Fan Y. A Robust Reduced Rank Graph Regression Method for Neuroimaging Genetic Analysis. Neuroinformatics 2018; 16:351-361. [PMID: 29907892 PMCID: PMC6092232 DOI: 10.1007/s12021-018-9382-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To characterize associations between genetic and neuroimaging data, a variety of analytic methods have been proposed in neuroimaging genetic studies. These methods have achieved promising performance by taking into account inherent correlation in either the neuroimaging data or the genetic data alone. In this study, we propose a novel robust reduced rank graph regression based method in a linear regression framework by considering correlations inherent in neuroimaging data and genetic data jointly. Particularly, we model the association analysis problem in a reduced rank regression framework with the genetic data as a feature matrix and the neuroimaging data as a response matrix by jointly considering correlations among the neuroimaging data as well as correlations between the genetic data and the neuroimaging data. A new graph representation of genetic data is adopted to exploit their inherent correlations, in addition to robust loss functions for both the regression and the data representation tasks, and a square-root-operator applied to the robust loss functions for achieving adaptive sample weighting. The resulting optimization problem is solved using an iterative optimization method whose convergence has been theoretically proved. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset have demonstrated that our method could achieve competitive performance in terms of regression performance between brain structural measures and the Single Nucleotide Polymorphisms (SNPs), compared with state-of-the-art alternative methods.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Weihong Zhang
- Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Szefer E, Lu D, Nathoo F, Beg MF, Graham J, Alzheimer’s Disease Neuroimaging Initiative. Multivariate association between single-nucleotide polymorphisms in Alzgene linkage regions and structural changes in the brain: discovery, refinement and validation. Stat Appl Genet Mol Biol 2017; 16:349-365. [PMID: 29091582 PMCID: PMC9008768 DOI: 10.1515/sagmb-2016-0077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractUsing publicly-available data from the Alzheimer’s Disease Neuroimaging Initiative, we investigate the joint association between single-nucleotide polymorphisms (SNPs) in previously established linkage regions for Alzheimer’s disease (AD) and rates of decline in brain structure. In an initial, discovery stage of analysis, we applied a weighted
Collapse
Affiliation(s)
- Elena Szefer
- Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - Donghuan Lu
- School of Engineering Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - Farouk Nathoo
- Department of Mathematics and Statistics, University of Victoria, PO Box 1700 STN CSC Victoria, BC V8W 2Y2, Canada
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada
| | - Jinko Graham
- Corresponding author: Jinko Graham, Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada,
| | | |
Collapse
|