Guo S, Korolija N, Milfeld K, Jhaveri A, Sang M, Ying YM, Johnson ME. Parallelization of Particle-Based Reaction-Diffusion Simulations Using MPI.
J Comput Chem 2025;
46:e70132. [PMID:
40405327 DOI:
10.1002/jcc.70132]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/22/2025] [Accepted: 05/02/2025] [Indexed: 05/24/2025]
Abstract
Particle-based reaction-diffusion offers a high-resolution alternative to the continuum reaction-diffusion approach, capturing the volume-excluding nature of molecules undergoing stochastic dynamics. This is essential for simulating self-assembly into higher-order structures like filaments, lattices, or macromolecular complexes. Applications of self-assembly are ubiquitous in chemistry, biology, and materials science, but these higher-resolution methods increase computational cost. Here, we present a parallel implementation of the particle-based NERDSS software using the message passing interface (MPI), achieving close to linear scaling for up to 96 processors. By using a spatial decomposition of the system across processors, our approach extends to very large simulation volumes. The scalability of parallel NERDSS is evaluated for reversible reactions and several examples of higher-order self-assembly in 3D and 2D, with all test cases producing accurate solutions. Parallel efficiency depends on the system size, timescales, and reaction network, showing optimal scaling for smaller assemblies with slower timescales. We provide parallel NERDSS code open-source, supporting development and extension to other particle-based reaction-diffusion software.
Collapse