1
|
Wu H, Wang M, Wu J, Francis F, Chang YH, Shavick A, Dong H, Poon MTC, Fitzpatrick N, Levine AP, Slater LT, Handy A, Karwath A, Gkoutos GV, Chelala C, Shah AD, Stewart R, Collier N, Alex B, Whiteley W, Sudlow C, Roberts A, Dobson RJB. A survey on clinical natural language processing in the United Kingdom from 2007 to 2022. NPJ Digit Med 2022; 5:186. [PMID: 36544046 PMCID: PMC9770568 DOI: 10.1038/s41746-022-00730-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Much of the knowledge and information needed for enabling high-quality clinical research is stored in free-text format. Natural language processing (NLP) has been used to extract information from these sources at scale for several decades. This paper aims to present a comprehensive review of clinical NLP for the past 15 years in the UK to identify the community, depict its evolution, analyse methodologies and applications, and identify the main barriers. We collect a dataset of clinical NLP projects (n = 94; £ = 41.97 m) funded by UK funders or the European Union's funding programmes. Additionally, we extract details on 9 funders, 137 organisations, 139 persons and 431 research papers. Networks are created from timestamped data interlinking all entities, and network analysis is subsequently applied to generate insights. 431 publications are identified as part of a literature review, of which 107 are eligible for final analysis. Results show, not surprisingly, clinical NLP in the UK has increased substantially in the last 15 years: the total budget in the period of 2019-2022 was 80 times that of 2007-2010. However, the effort is required to deepen areas such as disease (sub-)phenotyping and broaden application domains. There is also a need to improve links between academia and industry and enable deployments in real-world settings for the realisation of clinical NLP's great potential in care delivery. The major barriers include research and development access to hospital data, lack of capable computational resources in the right places, the scarcity of labelled data and barriers to sharing of pretrained models.
Collapse
Affiliation(s)
- Honghan Wu
- Institute of Health Informatics, University College London, London, UK.
| | - Minhong Wang
- Institute of Health Informatics, University College London, London, UK
| | - Jinge Wu
- Institute of Health Informatics, University College London, London, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Farah Francis
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Yun-Hsuan Chang
- Institute of Health Informatics, University College London, London, UK
| | - Alex Shavick
- Research Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Hang Dong
- Usher Institute, University of Edinburgh, Edinburgh, UK
- Department of Computer Science, University of Oxford, Oxford, UK
| | | | | | - Adam P Levine
- Research Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Luke T Slater
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Alex Handy
- Institute of Health Informatics, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| | - Andreas Karwath
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Georgios V Gkoutos
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Claude Chelala
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Anoop Dinesh Shah
- Institute of Health Informatics, University College London, London, UK
| | - Robert Stewart
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Nigel Collier
- Theoretical and Applied Linguistics, Faculty of Modern & Medieval Languages & Linguistics, University of Cambridge, Cambridge, UK
| | - Beatrice Alex
- Edinburgh Futures Institute, University of Edinburgh, Edinburgh, UK
| | | | - Cathie Sudlow
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Angus Roberts
- Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Richard J B Dobson
- Institute of Health Informatics, University College London, London, UK
- Department of Biostatistics & Health Informatics, King's College London, London, UK
| |
Collapse
|
2
|
Roper K, Abdel-Rehim A, Hubbard S, Carpenter M, Rzhetsky A, Soldatova L, King RD. Testing the reproducibility and robustness of the cancer biology literature by robot. J R Soc Interface 2022; 19:20210821. [PMID: 35382578 PMCID: PMC8984295 DOI: 10.1098/rsif.2021.0821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Scientific results should not just be ‘repeatable’ (replicable in the same laboratory under identical conditions), but also ‘reproducible’ (replicable in other laboratories under similar conditions). Results should also, if possible, be ‘robust’ (replicable under a wide range of conditions). The reproducibility and robustness of only a small fraction of published biomedical results has been tested; furthermore, when reproducibility is tested, it is often not found. This situation is termed ‘the reproducibility crisis', and it is one the most important issues facing biomedicine. This crisis would be solved if it were possible to automate reproducibility testing. Here, we describe the semi-automated testing for reproducibility and robustness of simple statements (propositions) about cancer cell biology automatically extracted from the literature. From 12 260 papers, we automatically extracted statements predicted to describe experimental results regarding a change of gene expression in response to drug treatment in breast cancer, from these we selected 74 statements of high biomedical interest. To test the reproducibility of these statements, two different teams used the laboratory automation system Eve and two breast cancer cell lines (MCF7 and MDA-MB-231). Statistically significant evidence for repeatability was found for 43 statements, and significant evidence for reproducibility/robustness in 22 statements. In two cases, the automation made serendipitous discoveries. The reproduced/robust knowledge provides significant insight into cancer. We conclude that semi-automated reproducibility testing is currently achievable, that it could be scaled up to generate a substantive source of reliable knowledge and that automation has the potential to mitigate the reproducibility crisis.
Collapse
Affiliation(s)
- Katherine Roper
- Manchester Institute of Biology, University of Manchester, Manchester, UK
| | - A Abdel-Rehim
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sonya Hubbard
- Manchester Institute of Biology, University of Manchester, Manchester, UK
| | - Martin Carpenter
- Manchester Institute of Biology, University of Manchester, Manchester, UK
| | - Andrey Rzhetsky
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Larisa Soldatova
- Department of Computing, Goldsmiths University of London, London, UK
| | - Ross D King
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.,Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.,Alan Turing Institute, London NW1 2DB, UK
| |
Collapse
|
3
|
Kropiwnicki E, Lachmann A, Clarke DJB, Xie Z, Jagodnik KM, Ma’ayan A. DrugShot: querying biomedical search terms to retrieve prioritized lists of small molecules. BMC Bioinformatics 2022; 23:76. [PMID: 35183110 PMCID: PMC8858480 DOI: 10.1186/s12859-022-04590-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background PubMed contains millions of abstracts that co-mention terms that describe drugs with other biomedical terms such as genes or diseases. Unique opportunities exist for leveraging these co-mentions by integrating them with other drug-drug similarity resources such as the Library of Integrated Network-based Cellular Signatures (LINCS) L1000 signatures to develop novel hypotheses. Results DrugShot is a web-based server application and an Appyter that enables users to enter any biomedical search term into a simple input form to receive ranked lists of drugs and other small molecules based on their relevance to the search term. To produce ranked lists of small molecules, DrugShot cross-references returned PubMed identifiers (PMIDs) with DrugRIF or AutoRIF, which are curated resources of drug-PMID associations, to produce an associated small molecule list where each small molecule is ranked according to total co-mentions with the search term from shared PubMed IDs. Additionally, using two types of drug-drug similarity matrices, lists of small molecules are predicted to be associated with the search term. Such predictions are based on literature co-mentions and signature similarity from LINCS L1000 drug-induced gene expression profiles. Conclusions DrugShot prioritizes drugs and small molecules associated with biomedical search terms. In addition to listing known associations, DrugShot predicts additional drugs and small molecules related to any search term. Hence, DrugShot can be used to prioritize drugs and preclinical compounds for drug repurposing and suggest indications and adverse events for preclinical compounds. DrugShot is freely and openly available at: https://maayanlab.cloud/drugshot and https://appyters.maayanlab.cloud/#/DrugShot. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04590-5.
Collapse
|
4
|
Casaní-Galdón S, Pereira C, Conesa A. Padhoc: a computational pipeline for pathway reconstruction on the fly. Bioinformatics 2020; 36:i795-i803. [PMID: 33381819 DOI: 10.1093/bioinformatics/btaa811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MOTIVATION Molecular pathway databases represent cellular processes in a structured and standardized way. These databases support the community-wide utilization of pathway information in biological research and the computational analysis of high-throughput biochemical data. Although pathway databases are critical in genomics research, the fast progress of biomedical sciences prevents databases from staying up-to-date. Moreover, the compartmentalization of cellular reactions into defined pathways reflects arbitrary choices that might not always be aligned with the needs of the researcher. Today, no tool exists that allow the easy creation of user-defined pathway representations. RESULTS Here we present Padhoc, a pipeline for pathway ad hoc reconstruction. Based on a set of user-provided keywords, Padhoc combines natural language processing, database knowledge extraction, orthology search and powerful graph algorithms to create navigable pathways tailored to the user's needs. We validate Padhoc with a set of well-established Escherichia coli pathways and demonstrate usability to create not-yet-available pathways in model (human) and non-model (sweet orange) organisms. AVAILABILITY AND IMPLEMENTATION Padhoc is freely available at https://github.com/ConesaLab/padhoc. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Cecile Pereira
- Institute for Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA.,EURA NOVA, Marseille 13382, France
| | - Ana Conesa
- Institute for Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| |
Collapse
|