1
|
Wang Y, Tang H, Gao C, Ge M, Li Z, Dong Z, Zhao L. Flexibility-aware graph model for accurate epitope identification. Comput Biol Med 2022; 149:106064. [DOI: 10.1016/j.compbiomed.2022.106064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022]
|
2
|
Couto J, Seixas G, Stutzer C, Olivier NA, Maritz-Olivier C, Antunes S, Domingos A. Probing the Rhipicephalusbursa Sialomes in Potential Anti-Tick Vaccine Candidates: A Reverse Vaccinology Approach. Biomedicines 2021; 9:363. [PMID: 33807386 PMCID: PMC8067113 DOI: 10.3390/biomedicines9040363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
In the wake of the 'omics' explosion of data, reverse vaccinology approaches are being applied more readily as an alternative for the discovery of candidates for next generation diagnostics and vaccines. Promising protective antigens for the control of ticks and tick-borne diseases can be discovered by mining available omics data for immunogenic epitopes. The present study aims to explore the previously obtained Rhipicephalus bursa sialotranscriptome during both feeding and Babesia infection, to select antigenic targets that are either membrane-associated or a secreted protein, as well as unique to the ectoparasite and not present in the mammalian host. Further, they should be capable of stimulating T and B cells for a potential robust immune response, and be non-allergenic or toxic to the host. From the R. bursa transcriptome, 5706 and 3025 proteins were identified as belonging to the surfaceome and secretome, respectively. Following a reverse genetics immunoinformatics pipeline, nine preferred candidates, consisting of one transmembrane-related and eight secreted proteins, were identified. These candidates showed a higher predicted antigenicity than the Bm86 antigen, with no homology to mammalian hosts and exposed regions. Only four were functionally annotated and selected for further in silico analysis, which examined their protein structure, surface accessibility, flexibility, hydrophobicity, and putative linear B and T-cell epitopes. Regions with overlapping coincident epitopes groups (CEGs) were evaluated to select peptides that were further analyzed for their physicochemical characteristics, potential allergenicity, toxicity, solubility, and potential propensity for crystallization. Following these procedures, a set of three peptides from the three R. bursa proteins were selected. In silico results indicate that the designed epitopes could stimulate a protective and long-lasting immune response against those tick proteins, reflecting its potential as anti-tick vaccines. The immunogenicity of these peptides was evaluated in a pilot immunization study followed by tick feeding to evaluate its impact on tick behavior and pathogen transmission. Combining in silico methods with in vivo immunogenicity evaluation enabled the screening of vaccine candidates prior to expensive infestation studies on the definitive ovine host animals.
Collapse
Affiliation(s)
- Joana Couto
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Gonçalo Seixas
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Christian Stutzer
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.S.); (C.M.-O.)
| | - Nicholas A. Olivier
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Christine Maritz-Olivier
- Division of Genetics, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (C.S.); (C.M.-O.)
| | - Sandra Antunes
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Domingos
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal; (G.S.); (A.D.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa (GHTM-IHMT-UNL), Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| |
Collapse
|
3
|
Teraguchi S, Saputri DS, Llamas-Covarrubias MA, Davila A, Diez D, Nazlica SA, Rozewicki J, Ismanto HS, Wilamowski J, Xie J, Xu Z, Loza-Lopez MDJ, van Eerden FJ, Li S, Standley DM. Methods for sequence and structural analysis of B and T cell receptor repertoires. Comput Struct Biotechnol J 2020; 18:2000-2011. [PMID: 32802272 PMCID: PMC7366105 DOI: 10.1016/j.csbj.2020.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
B cell receptors (BCRs) and T cell receptors (TCRs) make up an essential network of defense molecules that, collectively, can distinguish self from non-self and facilitate destruction of antigen-bearing cells such as pathogens or tumors. The analysis of BCR and TCR repertoires plays an important role in both basic immunology as well as in biotechnology. Because the repertoires are highly diverse, specialized software methods are needed to extract meaningful information from BCR and TCR sequence data. Here, we review recent developments in bioinformatics tools for analysis of BCR and TCR repertoires, with an emphasis on those that incorporate structural features. After describing the recent sequencing technologies for immune receptor repertoires, we survey structural modeling methods for BCR and TCRs, along with methods for clustering such models. We review downstream analyses, including BCR and TCR epitope prediction, antibody-antigen docking and TCR-peptide-MHC Modeling. We also briefly discuss molecular dynamics in this context.
Collapse
Affiliation(s)
- Shunsuke Teraguchi
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Dianita S. Saputri
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Mara Anais Llamas-Covarrubias
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Ana Davila
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Diego Diez
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Sedat Aybars Nazlica
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - John Rozewicki
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Hendra S. Ismanto
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Jan Wilamowski
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Jiaqi Xie
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Zichang Xu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | | | - Floris J. van Eerden
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Songling Li
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| | - Daron M. Standley
- Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Japan
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Japan
| |
Collapse
|