1
|
Bi X, Liu Y, Li J, Du G, Lv X, Liu L. Construction of Multiscale Genome-Scale Metabolic Models: Frameworks and Challenges. Biomolecules 2022; 12:biom12050721. [PMID: 35625648 PMCID: PMC9139095 DOI: 10.3390/biom12050721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Genome-scale metabolic models (GEMs) are effective tools for metabolic engineering and have been widely used to guide cell metabolic regulation. However, the single gene–protein-reaction data type in GEMs limits the understanding of biological complexity. As a result, multiscale models that add constraints or integrate omics data based on GEMs have been developed to more accurately predict phenotype from genotype. This review summarized the recent advances in the development of multiscale GEMs, including multiconstraint, multiomic, and whole-cell models, and outlined machine learning applications in GEM construction. This review focused on the frameworks, toolkits, and algorithms for constructing multiscale GEMs. The challenges and perspectives of multiscale GEM development are also discussed.
Collapse
Affiliation(s)
- Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; (X.B.); (Y.L.); (J.L.); (G.D.); (X.L.)
- Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-0510-8591-8312; Fax: +86-0510-8591-8309
| |
Collapse
|
2
|
Barberis M, Mondeel TD. Unveiling Forkhead-mediated regulation of yeast cell cycle and metabolic networks. Comput Struct Biotechnol J 2022; 20:1743-1751. [PMID: 35495119 PMCID: PMC9024378 DOI: 10.1016/j.csbj.2022.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
Abstract
Findings from genome-wide ChIP studies on budding yeast Forkheads are interpreted. Power, challenges and limitation of ChIP studies are presented by target gene analysis. Forkheads regulate metabolic targets through which cell division may be coordinated.
Transcription factors are regulators of the cell’s genomic landscape. By switching single genes or entire molecular pathways on or off, transcription factors modulate the precise timing of their activation. The Forkhead (Fkh) transcription factors are evolutionarily conserved to regulate organismal physiology and cell division. In addition to molecular biology and biochemical efforts, genome-wide studies have been conducted to characterize the genomic landscape potentially regulated by Forkheads in eukaryotes. Here, we discuss and interpret findings reported in six genome-wide Chromatin ImmunoPrecipitation (ChIP) studies, with a particular focus on ChIP-chip and ChIP-exo. We highlight their power and challenges to address Forkhead-mediated regulation of the cellular landscape in budding yeast. Expression changes of the targets identified in the binding assays are investigated by taking expression data for Forkhead deletion and overexpression into account. Forkheads are revealed as regulators of the metabolic network through which cell cycle dynamics may be temporally coordinated further, in addition to their well-known role as regulators of the gene cluster responsible for cell division.
Collapse
|
3
|
Mondeel TDGA, Holland P, Nielsen J, Barberis M. ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast. Nucleic Acids Res 2019; 47:7825-7841. [PMID: 31299083 PMCID: PMC6736057 DOI: 10.1093/nar/gkz603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 01/18/2023] Open
Abstract
The understanding of the multi-scale nature of molecular networks represents a major challenge. For example, regulation of a timely cell cycle must be coordinated with growth, during which changes in metabolism occur, and integrate information from the extracellular environment, e.g. signal transduction. Forkhead transcription factors are evolutionarily conserved among eukaryotes, and coordinate a timely cell cycle progression in budding yeast. Specifically, Fkh1 and Fkh2 are expressed during a lengthy window of the cell cycle, thus are potentially able to function as hubs in the multi-scale cellular environment that interlocks various biochemical networks. Here we report on a novel ChIP-exo dataset for Fkh1 and Fkh2 in both logarithmic and stationary phases, which is analyzed by novel and existing software tools. Our analysis confirms known Forkhead targets from available ChIP-chip studies and highlights novel ones involved in the cell cycle, metabolism and signal transduction. Target genes are analyzed with respect to their function, temporal expression during the cell cycle, correlation with Fkh1 and Fkh2 as well as signaling and metabolic pathways they occur in. Furthermore, differences in targets between Fkh1 and Fkh2 are presented. Our work highlights Forkhead transcription factors as hubs that integrate multi-scale networks to achieve proper timing of cell division in budding yeast.
Collapse
Affiliation(s)
- Thierry D G A Mondeel
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, Surrey, UK.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Petter Holland
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE412 96, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, DK2800 Kgs., Denmark
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, Surrey, UK.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
4
|
Advanced Modeling of Cellular Proliferation: Toward a Multi-scale Framework Coupling Cell Cycle to Metabolism by Integrating Logical and Constraint-Based Models. Methods Mol Biol 2019. [PMID: 31602622 DOI: 10.1007/978-1-4939-9736-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biological functions require a coherent cross talk among multiple layers of regulation within the cell. Computational efforts that aim to understand how these layers are integrated across spatial, temporal, and functional scales represent a challenge in Systems Biology. We have developed a computational, multi-scale framework that couples cell cycle and metabolism networks in the budding yeast cell. Here we describe the methodology at the basis of this framework, which integrates on off-the-shelf logical (Boolean) models of a minimal yeast cell cycle with a constraint-based model of metabolism (i.e., the Yeast 7 metabolic network reconstruction). Models are implemented in Python code using the BooleanNet and COBRApy packages, respectively, and are connected through the Boolean logic. The methodology allows for incorporation of interaction data, and validation through -omics data. Furthermore, evolutionary strategies may be incorporated to explore regulatory structures underlying coherent cross talks among regulatory layers.
Collapse
|