2
|
Yu Y, Hou W, Liu Y, Wang H, Dong L, Mai Y, Chen Q, Li Z, Sun S, Yang J, Cao Z, Zhang P, Zi Y, Liu R, Gao J, Zhang N, Li J, Ren L, Jiang H, Shang J, Zhu S, Wang X, Qing T, Bao D, Li B, Li B, Suo C, Pi Y, Wang X, Dai F, Scherer A, Mattila P, Han J, Zhang L, Jiang H, Thierry-Mieg D, Thierry-Mieg J, Xiao W, Hong H, Tong W, Wang J, Li J, Fang X, Jin L, Xu J, Qian F, Zhang R, Shi L, Zheng Y. Quartet RNA reference materials improve the quality of transcriptomic data through ratio-based profiling. Nat Biotechnol 2024; 42:1118-1132. [PMID: 37679545 PMCID: PMC11251996 DOI: 10.1038/s41587-023-01867-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/15/2023] [Indexed: 09/09/2023]
Abstract
Certified RNA reference materials are indispensable for assessing the reliability of RNA sequencing to detect intrinsically small biological differences in clinical settings, such as molecular subtyping of diseases. As part of the Quartet Project for quality control and data integration of multi-omics profiling, we established four RNA reference materials derived from immortalized B-lymphoblastoid cell lines from four members of a monozygotic twin family. Additionally, we constructed ratio-based transcriptome-wide reference datasets between two samples, providing cross-platform and cross-laboratory 'ground truth'. Investigation of the intrinsically subtle biological differences among the Quartet samples enables sensitive assessment of cross-batch integration of transcriptomic measurements at the ratio level. The Quartet RNA reference materials, combined with the ratio-based reference datasets, can serve as unique resources for assessing and improving the quality of transcriptomic data in clinical and biological settings.
Collapse
Affiliation(s)
- Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yaqing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Haiyan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | | | - Yuanbang Mai
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhihui Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shanyue Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | - Zehui Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Peipei Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yi Zi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ruimei Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Naixin Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jingjing Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
- Nextomics Biosciences Institute, Wuhan, China
| | - Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - He Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jun Shang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xiaolin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Tao Qing
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ding Bao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Bingying Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Bin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Chen Suo
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yan Pi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xia Wang
- National Institute of Metrology, Beijing, China
| | | | - Andreas Scherer
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- EATRIS ERIC-European Infrastructure for Translational Medicine, Amsterdam, The Netherlands
| | - Pirkko Mattila
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- EATRIS ERIC-European Infrastructure for Translational Medicine, Amsterdam, The Netherlands
| | | | - Lijun Zhang
- Nanjing Vazyme Biotech Co. Ltd., Nanjing, China
| | | | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wenming Xiao
- Office of Oncologic Diseases, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Jing Wang
- National Institute of Metrology, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, China
- National Center of Gerontology, Beijing, China
| | - Xiang Fang
- National Institute of Metrology, Beijing, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Joshua Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA.
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China.
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Rui Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, China.
- National Center of Gerontology, Beijing, China.
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China.
- International Human Phenome Institutes, Shanghai, China.
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Singh U, Hur M, Dorman K, Wurtele ES. MetaOmGraph: a workbench for interactive exploratory data analysis of large expression datasets. Nucleic Acids Res 2020; 48:e23. [PMID: 31956905 PMCID: PMC7039010 DOI: 10.1093/nar/gkz1209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The diverse and growing omics data in public domains provide researchers with tremendous opportunity to extract hidden, yet undiscovered, knowledge. However, the vast majority of archived data remain unused. Here, we present MetaOmGraph (MOG), a free, open-source, standalone software for exploratory analysis of massive datasets. Researchers, without coding, can interactively visualize and evaluate data in the context of its metadata, honing-in on groups of samples or genes based on attributes such as expression values, statistical associations, metadata terms and ontology annotations. Interaction with data is easy via interactive visualizations such as line charts, box plots, scatter plots, histograms and volcano plots. Statistical analyses include co-expression analysis, differential expression analysis and differential correlation analysis, with significance tests. Researchers can send data subsets to R for additional analyses. Multithreading and indexing enable efficient big data analysis. A researcher can create new MOG projects from any numerical data; or explore an existing MOG project. MOG projects, with history of explorations, can be saved and shared. We illustrate MOG by case studies of large curated datasets from human cancer RNA-Seq, where we identify novel putative biomarker genes in different tumors, and microarray and metabolomics data from Arabidopsis thaliana. MOG executable and code: http://metnetweb.gdcb.iastate.edu/ and https://github.com/urmi-21/MetaOmGraph/.
Collapse
Affiliation(s)
- Urminder Singh
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Manhoi Hur
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
| | - Karin Dorman
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
- Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Thompson M, Chen ZJ, Rahmani E, Halperin E. CONFINED: distinguishing biological from technical sources of variation by leveraging multiple methylation datasets. Genome Biol 2019; 20:138. [PMID: 31300005 PMCID: PMC6624895 DOI: 10.1186/s13059-019-1743-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Methylation datasets are affected by innumerable sources of variability, both biological (cell-type composition, genetics) and technical (batch effects). Here, we propose a reference-free method based on sparse canonical correlation analysis to separate the biological from technical sources of variability. We show through simulations and real data that our method, CONFINED, is not only more accurate than the state-of-the-art reference-free methods for capturing known, replicable biological variability, but it is also considerably more robust to dataset-specific technical variability than previous approaches. CONFINED is available as an R package as detailed at https://github.com/cozygene/CONFINED.
Collapse
Affiliation(s)
- Mike Thompson
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Zeyuan Johnson Chen
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Elior Rahmani
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Eran Halperin
- Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Anesthesiology and Perioperative Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Biomathematics, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Zhang LL, Huang MY, Li Y, Liang JH, Gao TS, Deng B, Yao JJ, Lin L, Chen FP, Huang XD, Kou J, Li CF, Xie CM, Lu Y, Sun Y. Pretreatment MRI radiomics analysis allows for reliable prediction of local recurrence in non-metastatic T4 nasopharyngeal carcinoma. EBioMedicine 2019; 42:270-280. [PMID: 30928358 PMCID: PMC6491646 DOI: 10.1016/j.ebiom.2019.03.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND To identify a radiomics signature to predict local recurrence in patients with non-metastatic T4 nasopharyngeal carcinoma (NPC). METHODS A total of 737 patients from Sun Yat-sen University Cancer Center (training cohort: n = 360; internal validation cohort: n = 120) and Wuzhou Red Cross Hospital (external validation cohort: n = 257) underwent feature extraction from the largest axial area of the tumor on pretreatment magnetic resonance imaging scans. Feature selection was based on the prognostic performance and feature stability in the training cohort. Radscores were generated using the Cox proportional hazards regression model with the selected features in the training cohort and then validated in the internal and external validation cohorts. We also constructed a nomogram for predicting local recurrence-free survival (LRFS). FINDINGS Eleven features were selected to construct the Radscore, which was significantly associated with LRFS. For the training, internal validation, and external validation cohorts, the Radscore (C-index: 0.741 vs. 0.753 vs. 0.730) outperformed clinical prognostic variables (C-index for primary gross tumor volume: 0.665 vs. 0.672 vs. 0.577; C-index for age: 0.571 vs. 0.629 vs. 0.605) in predicting LRFS. The generated radiomics nomogram, which integrated the Radscore and clinical variables, exhibited a satisfactory prediction performance (C-index: 0.810 vs. 0.807 vs. 0.753). The nomogram-defined high-risk group had a shorter LRFS than did the low-risk group (5-year LRFS: 73.6% vs. 95.3%, P < .001; 79.6% vs 95.8%, P = .006; 85.7% vs 96.7%, P = .005). INTERPRETATION The Radscore can reliably predict LRFS in patients with non-metastatic T4 NPC, which might guide individual treatment decisions. FUND: This study was funded by the Health & Medical Collaborative Innovation Project of Guangzhou City, China.
Collapse
Affiliation(s)
- Lu-Lu Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Meng-Yao Huang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510060, PR China
| | - Yan Li
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510060, PR China
| | - Jin-Hui Liang
- Department of Radiation Oncology, Wuzhou Red Cross Hospital, Guangxi Province 543002, PR China
| | - Tian-Sheng Gao
- Department of Radiation Oncology, Wuzhou Red Cross Hospital, Guangxi Province 543002, PR China
| | - Bin Deng
- Department of Radiation Oncology, Wuzhou Red Cross Hospital, Guangxi Province 543002, PR China
| | - Ji-Jin Yao
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province 519000, PR China
| | - Li Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Fo-Ping Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Xiao-Dan Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Jia Kou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Chao-Feng Li
- Department of Information Technology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Chuan-Miao Xie
- Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China
| | - Yao Lu
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510060, PR China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, PR China.
| |
Collapse
|