1
|
Shahid, Hayat M, Raza A, Akbar S, Alghamdi W, Iqbal N, Zou Q. pACPs-DNN: Predicting anticancer peptides using novel peptide transformation into evolutionary and structure matrix-based images with self-attention deep learning model. Comput Biol Chem 2025; 117:108441. [PMID: 40168838 DOI: 10.1016/j.compbiolchem.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
Globally, cancer remains a major health challenge due to its high mortality rates. Traditional experimental approaches and therapies are resource-intensive and often cause significant side effects. Anticancer peptides (ACPs) have emerged as alternative therapeutic agents owing to their selectivity, safety, and potential to mitigate drug resistance. In this paper, we propose pACPs-DNN, a novel attention mechanism-based deep learning model developed for the accurate prediction of ACPs and non-ACPs. The pACPs-DNN model transforms input peptides into image representations using residue-wise energy contact matrix (RECM), substitution Matrix Representation (SMR), and Position Specific Scoring Matrix (PSSM) embeddings, followed by local binary pattern (LBP)-based decomposition to capture enhanced structural and local semantic features. These transformations generate novel feature sets, including RECM_LBP, LBP_SMR, and LBP_PSSM. Subsequently, a two-tier feature selection approach is employed to identify a high-ranking optimal feature set, which is then used to train an attention-based deep neural network. The proposed pACPs-DNN model achieves an impressive training accuracy of 96.91 % and an AUC of 0.98. To evaluate its generalization capability, the model was validated on independent datasets, demonstrating significant improvements of 5 % and 3.5 % in accuracy over existing models on the Ind-I and Ind-II datasets, respectively. The demonstrated efficacy and robustness of pACPs-DNN highlight its potential as a valuable tool for advancing drug discovery and academic research in cancer-related therapeutic development.
Collapse
Affiliation(s)
- Shahid
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | - Maqsood Hayat
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan.
| | - Ali Raza
- Department of Computer Science, Bahria University, Islamabad 44220, Pakistan
| | - Shahid Akbar
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wajdi Alghamdi
- Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nadeem Iqbal
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China.
| |
Collapse
|
2
|
Nafi MMI. Predicting C- and S-linked Glycosylation sites from protein sequences using protein language models. Comput Biol Med 2025; 189:109956. [PMID: 40073495 DOI: 10.1016/j.compbiomed.2025.109956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Among various post-translational modifications (PTMs), predicting C-linked and S-linked glycosites is an essential task, yet experimental techniques such as Capillary Electrophoresis (CE), Enzymatic Deglycosylation, and Mass Spectrometry (MS) are expensive. Therefore, computational techniques are required to predict these glycosites. Here, different language model embeddings and sequential features were explored. Two separate feature selection methods: Recursive Feature Elimination (RFE) and Particle Swarm Optimization (PSO) were employed and utilized for identifying the optimal feature set. Cross-validation results were generated for choosing the final models. Three sampling strategies to handle imbalanced datasets were examined: Random undersampling, Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN). In this study, two models: DeepCSEmbed-C and DeepCSEmbed-S are proposed for C-linked and S-linked glycosylation prediction respectively. DeepCSEmbed-C is a dual-branch deep learning model comprising a Feedforward Neural Network (FNN) branch and an Inception branch, coupled with a Random undersampling strategy. DeepCSEmbed-S is a Categorical Boosting (CAT) model with the SMOTE oversampling strategy. DeepCSEmbed-C outperformed available state-of-the-art (SOTA) methods, achieving 92.9% sensitivity, 95.1% F1-score and 90.6% MCC on the Independent dataset. Datasets and python scripts for training and testing the models are provided and made freely accessible at https://github.com/nafcoder/DeepCSEmbed.
Collapse
|
3
|
Pokharel S, Barasa K, Pratyush P, KC DB. PLM-DBPs: enhancing plant DNA-binding protein prediction by integrating sequence-based and structure-aware protein language models. Brief Bioinform 2025; 26:bbaf245. [PMID: 40439671 PMCID: PMC12121366 DOI: 10.1093/bib/bbaf245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 06/02/2025] Open
Abstract
DNA-binding proteins (DBPs) play a crucial role in gene regulation, development, and environmental responses across plants, animals, and microorganisms. Existing DBP prediction methods are largely limited to sequence information, whether through handcrafted features or sequence-based protein language models (PLMs), overlooking structural cues critical to protein function. In addition, most existing tools are trained for general DBP predictions, which are often not accurate for plant-specific DBPs due to the unique structural and functional properties of plant proteins. Our work introduces PLM-DBPs, a deep learning framework that integrates both sequence-based and structure-aware representations to enhance DBP prediction in plants. We evaluated several state-of-the-art PLMs to extract high-dimensional protein representations and experimented with various fusion strategies to validate the complementary information between the various representations. Our final model, a fusion of sequence-based and structure-aware ANN models, achieves a notable improvement in predicting DBPs in plants outperforming previous state-of-the-art models. Although sequence-based PLMs already demonstrate strong performance in DBP prediction, our findings show that the integration of structural information further enhances predictive accuracy. This underscores the complementary nature of structural representations and establishes PLM-DBPs as a robust tool for advancing plant research and agricultural innovation. The proposed model and other resources are publicly available at https://github.com/suresh-pokharel/PLM-DBPs.
Collapse
Affiliation(s)
- Suresh Pokharel
- Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester 14623, NY, United States
| | - Kepha Barasa
- College of Computing, Michigan Technological University, Houghton 49931, MI, United States
| | - Pawel Pratyush
- Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester 14623, NY, United States
| | - Dukka B KC
- Golisano College of Computing and Information Sciences, Rochester Institute of Technology, Rochester 14623, NY, United States
| |
Collapse
|
4
|
Wu S, Xu J, Guo JT. Accurate prediction of nucleic acid binding proteins using protein language model. BIOINFORMATICS ADVANCES 2025; 5:vbaf008. [PMID: 39990254 PMCID: PMC11845279 DOI: 10.1093/bioadv/vbaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025]
Abstract
Motivation Nucleic acid binding proteins (NABPs) play critical roles in various and essential biological processes. Many machine learning-based methods have been developed to predict different types of NABPs. However, most of these studies have limited applications in predicting the types of NABPs for any given protein with unknown functions, due to several factors such as dataset construction, prediction scope and features used for training and testing. In addition, single-stranded DNA binding proteins (DBP) (SSBs) have not been extensively investigated for identifying novel SSBs from proteins with unknown functions. Results To improve prediction accuracy of different types of NABPs for any given protein, we developed hierarchical and multi-class models with machine learning-based methods and a feature extracted from protein language model ESM2. Our results show that by combining the feature from ESM2 and machine learning methods, we can achieve high prediction accuracy up to 95% for each stage in the hierarchical approach, and 85% for overall prediction accuracy from the multi-class approach. More importantly, besides the much improved prediction of other types of NABPs, the models can be used to accurately predict single-stranded DBPs, which is underexplored. Availability and implementation The datasets and code can be found at https://figshare.com/projects/Prediction_of_nucleic_acid_binding_proteins_using_protein_language_model/211555.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL 60637, United States
| | - Jun-tao Guo
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| |
Collapse
|
5
|
Harini K, Sekijima M, Gromiha MM. Bioinformatics Approaches for Understanding the Binding Affinity of Protein-Nucleic Acid Complexes. Methods Mol Biol 2025; 2867:315-330. [PMID: 39576589 DOI: 10.1007/978-1-0716-4196-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Protein-nucleic acid interactions are involved in various biological processes such as gene expression, replication, transcription, translation, and packaging. Understanding the recognition mechanism of the protein-nucleic acid complexes has been investigated from different perspectives, including the binding affinities of protein-DNA and protein-RNA complexes. Experimentally, protein-nucleic acid interactions are analyzed using X-ray crystallography, Isothermal Titration Calorimetry (ITC), DNA/RNA pull-down assays, DNA/RNA footprinting, and systematic evolution of ligands by exponential enrichment (SELEX). On the other hand, numerous databases and computational tools have been developed to study protein-nucleic acid complexes based on their binding sites, specific interactions between them, and binding affinity. In this chapter, we discuss various databases for protein-nucleic acid complex structures and the tools available to extract features from them. Further, we provide details on databases and prediction methods reported for exploring the binding affinity of protein-nucleic acid complexes along with important structure-based parameters, which govern the binding affinity.
Collapse
Affiliation(s)
- K Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Masakazu Sekijima
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
- International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
6
|
Luo X, Chi ASY, Lin AH, Ong TJ, Wong L, Rahman CR. Benchmarking recent computational tools for DNA-binding protein identification. Brief Bioinform 2024; 26:bbae634. [PMID: 39657630 PMCID: PMC11630855 DOI: 10.1093/bib/bbae634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Identification of DNA-binding proteins (DBPs) is a crucial task in genome annotation, as it aids in understanding gene regulation, DNA replication, transcriptional control, and various cellular processes. In this paper, we conduct an unbiased benchmarking of 11 state-of-the-art computational tools as well as traditional tools such as ScanProsite, BLAST, and HMMER for identifying DBPs. We highlight the data leakage issue in conventional datasets leading to inflated performance. We introduce new evaluation datasets to support further development. Through a comprehensive evaluation pipeline, we identify potential limitations in models, feature extraction techniques, and training methods, and recommend solutions regarding these issues. We show that combining the predictions of the two best computational tools with BLAST-based prediction significantly enhances DBP identification capability. We provide this consensus method as user-friendly software. The datasets and software are available at https://github.com/Rafeed-bot/DNA_BP_Benchmarking.
Collapse
Affiliation(s)
- Xizi Luo
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Amadeus Song Yi Chi
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Andre Huikai Lin
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Tze Jet Ong
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore 119077, Singapore
| | | |
Collapse
|
7
|
Ullah M, Akbar S, Raza A, Khan KA, Zou Q. TargetCLP: clathrin proteins prediction combining transformed and evolutionary scale modeling-based multi-view features via weighted feature integration approach. Brief Bioinform 2024; 26:bbaf026. [PMID: 39844339 PMCID: PMC11753890 DOI: 10.1093/bib/bbaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Clathrin proteins, key elements of the vesicle coat, play a crucial role in various cellular processes, including neural function, signal transduction, and endocytosis. Disruptions in clathrin protein functions have been associated with a wide range of diseases, such as Alzheimer's, neurodegeneration, viral infection, and cancer. Therefore, correctly identifying clathrin protein functions is critical to unravel the mechanism of these fatal diseases and designing drug targets. This paper presents a novel computational method, named TargetCLP, to precisely identify clathrin proteins. TargetCLP leverages four single-view feature representation methods, including two transformed feature sets (PSSM-CLBP and RECM-CLBP), one qualitative characteristics feature, and one deep-learned-based embedding using ESM. The single-view features are integrated based on their weights using differential evolution, and the BTG feature selection algorithm is utilized to generate a more optimal and reduced subset. The model is trained using various classifiers, among which the proposed SnBiLSTM achieved remarkable performance. Experimental and comparative results on both training and independent datasets show that the proposed TargetCLP offers significant improvements in terms of both prediction accuracy and generalization to unseen data, furthering advancements in the research field.
Collapse
Affiliation(s)
- Matee Ullah
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ali Raza
- Department of Computer Science, MY University, Islamabad 45750, Pakistan
| | - Kashif Ahmad Khan
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China
| |
Collapse
|
8
|
Daanial Khan Y, Alkhalifah T, Alturise F, Hassan Butt A. DeepDBS: Identification of DNA-binding sites in protein sequences by using deep representations and random forest. Methods 2024; 231:26-36. [PMID: 39270885 DOI: 10.1016/j.ymeth.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Interactions of biological molecules in organisms are considered to be primary factors for the lifecycle of that organism. Various important biological functions are dependent on such interactions and among different kinds of interactions, the protein DNA interactions are very important for the processes of transcription, regulation of gene expression, DNA repairing and packaging. Thus, keeping the knowledge of such interactions and the sites of those interactions is necessary to study the mechanism of various biological processes. As experimental identification through biological assays is quite resource-demanding, costly and error-prone, scientists opt for the computational methods for efficient and accurate identification of such DNA-protein interaction sites. Thus, herein, we propose a novel and accurate method namely DeepDBS for the identification of DNA-binding sites in proteins, using primary amino acid sequences of proteins under study. From protein sequences, deep representations were computed through a one-dimensional convolution neural network (1D-CNN), recurrent neural network (RNN) and long short-term memory (LSTM) network and were further used to train a Random Forest classifier. Random Forest with LSTM-based features outperformed the other models, as well as the existing state-of-the-art methods with an accuracy score of 0.99 for self-consistency test, 10-fold cross-validation, 5-fold cross-validation, and jackknife validation while 0.92 for independent dataset testing. It is concluded based on results that the DeepDBS can help accurate and efficient identification of DNA binding sites (DBS) in proteins.
Collapse
Affiliation(s)
- Yaser Daanial Khan
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore, Punjab 54770, Pakistan
| | - Tamim Alkhalifah
- Department of Computer Engineering, College of Computer, Qassim University, Buraydah, Saudi Arabia
| | - Fahad Alturise
- Department of Cybersecurity, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia
| | - Ahmad Hassan Butt
- Department of Computer Science, Faculty of Computing and Information Technology, University of the Punjab, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
9
|
Hu X, Zhang X, Sun W, Liu C, Deng P, Cao Y, Zhang C, Xu N, Zhang T, Zhang Y, Liu JJ, Wang H. Systematic discovery of DNA-binding tandem repeat proteins. Nucleic Acids Res 2024; 52:10464-10489. [PMID: 39189466 PMCID: PMC11417379 DOI: 10.1093/nar/gkae710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Tandem repeat proteins (TRPs) are widely distributed and bind to a wide variety of ligands. DNA-binding TRPs such as zinc finger (ZNF) and transcription activator-like effector (TALE) play important roles in biology and biotechnology. In this study, we first conducted an extensive analysis of TRPs in public databases, and found that the enormous diversity of TRPs is largely unexplored. We then focused our efforts on identifying novel TRPs possessing DNA-binding capabilities. We established a protein language model for DNA-binding protein prediction (PLM-DBPPred), and predicted a large number of DNA-binding TRPs. A subset was then selected for experimental screening, leading to the identification of 11 novel DNA-binding TRPs, with six showing sequence specificity. Notably, members of the STAR (Short TALE-like Repeat proteins) family can be programmed to target specific 9 bp DNA sequences with high affinity. Leveraging this property, we generated artificial transcription factors using reprogrammed STAR proteins and achieved targeted activation of endogenous gene sets. Furthermore, the members of novel families such as MOON (Marine Organism-Originated DNA binding protein) and pTERF (prokaryotic mTERF-like protein) exhibit unique features and distinct DNA-binding characteristics, revealing interesting biological clues. Our study expands the diversity of DNA-binding TRPs, and demonstrates that a systematic approach greatly enhances the discovery of new biological insights and tools.
Collapse
Affiliation(s)
- Xiaoxuan Hu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuechun Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Sun
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chunhong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Pujuan Deng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanwei Cao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenze Zhang
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ning Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongtong Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun-Jie Gogo Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoyi Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
10
|
Li X, Wei Z, Hu Y, Zhu X. GraphNABP: Identifying nucleic acid-binding proteins with protein graphs and protein language models. Int J Biol Macromol 2024; 280:135599. [PMID: 39276905 DOI: 10.1016/j.ijbiomac.2024.135599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The computational identification of nucleic acid-binding proteins (NABP) is of great significance for understanding the mechanisms of these biological activities and drug discovery. Although a bunch of sequence-based methods have been proposed to predict NABP and achieved promising performance, the structure information is often overlooked. On the other hand, the power of popular protein language models (pLM) has seldom been harnessed for predicting NABPs. In this study, we propose a novel framework called GraphNABP, to predict NABP by integrating sequence and predicted 3D structure information. Specifically, sequence embeddings and protein molecular graphs were first obtained from ProtT5 protein language model and predicted 3D structures, respectively. Then, graph attention (GAT) and bidirectional long short-term memory (BiLSTM) neural networks were used to enhance feature representations. Finally, a fully connected layer is used to predict NABPs. To the best of our knowledge, this is the first time to integrate AlphaFold and protein language models for the prediction of NABPs. The performances on multiple independent test sets indicate that GraphNABP outperforms other state-of-the-art methods. Our results demonstrate the effectiveness of pLM embeddings and structural information for NABP prediction. The codes and data used in this study are available at https://github.com/lixiangli01/GraphNABP.
Collapse
Affiliation(s)
- Xiang Li
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhuoyu Wei
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yueran Hu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaolei Zhu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
11
|
Rukh G, Akbar S, Rehman G, Alarfaj FK, Zou Q. StackedEnC-AOP: prediction of antioxidant proteins using transform evolutionary and sequential features based multi-scale vector with stacked ensemble learning. BMC Bioinformatics 2024; 25:256. [PMID: 39098908 PMCID: PMC11298090 DOI: 10.1186/s12859-024-05884-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Antioxidant proteins are involved in several biological processes and can protect DNA and cells from the damage of free radicals. These proteins regulate the body's oxidative stress and perform a significant role in many antioxidant-based drugs. The current invitro-based medications are costly, time-consuming, and unable to efficiently screen and identify the targeted motif of antioxidant proteins. METHODS In this model, we proposed an accurate prediction method to discriminate antioxidant proteins namely StackedEnC-AOP. The training sequences are formulation encoded via incorporating a discrete wavelet transform (DWT) into the evolutionary matrix to decompose the PSSM-based images via two levels of DWT to form a Pseudo position-specific scoring matrix (PsePSSM-DWT) based embedded vector. Additionally, the Evolutionary difference formula and composite physiochemical properties methods are also employed to collect the structural and sequential descriptors. Then the combined vector of sequential features, evolutionary descriptors, and physiochemical properties is produced to cover the flaws of individual encoding schemes. To reduce the computational cost of the combined features vector, the optimal features are chosen using Minimum redundancy and maximum relevance (mRMR). The optimal feature vector is trained using a stacking-based ensemble meta-model. RESULTS Our developed StackedEnC-AOP method reported a prediction accuracy of 98.40% and an AUC of 0.99 via training sequences. To evaluate model validation, the StackedEnC-AOP training model using an independent set achieved an accuracy of 96.92% and an AUC of 0.98. CONCLUSION Our proposed StackedEnC-AOP strategy performed significantly better than current computational models with a ~ 5% and ~ 3% improved accuracy via training and independent sets, respectively. The efficacy and consistency of our proposed StackedEnC-AOP make it a valuable tool for data scientists and can execute a key role in research academia and drug design.
Collapse
Affiliation(s)
- Gul Rukh
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Fawaz Khaled Alarfaj
- Department of Management Information Systems (MIS), School of Business, King Faisal University (KFU), 31982, Al-Ahsa, Saudi Arabia
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, People's Republic of China.
| |
Collapse
|
12
|
Pradhan UK, Meher PK, Naha S, Sharma NK, Agarwal A, Gupta A, Parsad R. DBPMod: a supervised learning model for computational recognition of DNA-binding proteins in model organisms. Brief Funct Genomics 2024; 23:363-372. [PMID: 37651627 DOI: 10.1093/bfgp/elad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
DNA-binding proteins (DBPs) play critical roles in many biological processes, including gene expression, DNA replication, recombination and repair. Understanding the molecular mechanisms underlying these processes depends on the precise identification of DBPs. In recent times, several computational methods have been developed to identify DBPs. However, because of the generic nature of the models, these models are unable to identify species-specific DBPs with higher accuracy. Therefore, a species-specific computational model is needed to predict species-specific DBPs. In this paper, we introduce the computational DBPMod method, which makes use of a machine learning approach to identify species-specific DBPs. For prediction, both shallow learning algorithms and deep learning models were used, with shallow learning models achieving higher accuracy. Additionally, the evolutionary features outperformed sequence-derived features in terms of accuracy. Five model organisms, including Caenorhabditis elegans, Drosophila melanogaster, Escherichia coli, Homo sapiens and Mus musculus, were used to assess the performance of DBPMod. Five-fold cross-validation and independent test set analyses were used to evaluate the prediction accuracy in terms of area under receiver operating characteristic curve (auROC) and area under precision-recall curve (auPRC), which was found to be ~89-92% and ~89-95%, respectively. The comparative results demonstrate that the DBPMod outperforms 12 current state-of-the-art computational approaches in identifying the DBPs for all five model organisms. We further developed the web server of DBPMod to make it easier for researchers to detect DBPs and is publicly available at https://iasri-sg.icar.gov.in/dbpmod/. DBPMod is expected to be an invaluable tool for discovering DBPs, supplementing the current experimental and computational methods.
Collapse
Affiliation(s)
- Upendra K Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Prabina K Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Nitesh K Sharma
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1540 Alcazar Street, Los Angeles, CA 90033, USA
| | - Aarushi Agarwal
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201313, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| |
Collapse
|
13
|
Pradhan UK, Meher PK, Naha S, Das R, Gupta A, Parsad R. ProkDBP: Toward more precise identification of prokaryotic DNA binding proteins. Protein Sci 2024; 33:e5015. [PMID: 38747369 PMCID: PMC11094783 DOI: 10.1002/pro.5015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/19/2024]
Abstract
Prokaryotic DNA binding proteins (DBPs) play pivotal roles in governing gene regulation, DNA replication, and various cellular functions. Accurate computational models for predicting prokaryotic DBPs hold immense promise in accelerating the discovery of novel proteins, fostering a deeper understanding of prokaryotic biology, and facilitating the development of therapeutics targeting for potential disease interventions. However, existing generic prediction models often exhibit lower accuracy in predicting prokaryotic DBPs. To address this gap, we introduce ProkDBP, a novel machine learning-driven computational model for prediction of prokaryotic DBPs. For prediction, a total of nine shallow learning algorithms and five deep learning models were utilized, with the shallow learning models demonstrating higher performance metrics compared to their deep learning counterparts. The light gradient boosting machine (LGBM), coupled with evolutionarily significant features selected via random forest variable importance measure (RF-VIM) yielded the highest five-fold cross-validation accuracy. The model achieved the highest auROC (0.9534) and auPRC (0.9575) among the 14 machine learning models evaluated. Additionally, ProkDBP demonstrated substantial performance with an independent dataset, exhibiting higher values of auROC (0.9332) and auPRC (0.9371). Notably, when benchmarked against several cutting-edge existing models, ProkDBP showcased superior predictive accuracy. Furthermore, to promote accessibility and usability, ProkDBP (https://iasri-sg.icar.gov.in/prokdbp/) is available as an online prediction tool, enabling free access to interested users. This tool stands as a significant contribution, enhancing the repertoire of resources for accurate and efficient prediction of prokaryotic DBPs.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical GeneticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Prabina Kumar Meher
- Division of Statistical GeneticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Sanchita Naha
- Division of Computer ApplicationsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Ritwika Das
- Division of Agricultural BioinformaticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Ajit Gupta
- Division of Statistical GeneticsICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| | - Rajender Parsad
- ICAR‐Indian Agricultural Statistics Research Institute, PUSANew DelhiIndia
| |
Collapse
|
14
|
Wu S, Guo JT. Improved prediction of DNA and RNA binding proteins with deep learning models. Brief Bioinform 2024; 25:bbae285. [PMID: 38856168 PMCID: PMC11163377 DOI: 10.1093/bib/bbae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024] Open
Abstract
Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles in essential biological processes. To facilitate functional annotation and accurate prediction of different types of NABPs, many machine learning-based computational approaches have been developed. However, the datasets used for training and testing as well as the prediction scopes in these studies have limited their applications. In this paper, we developed new strategies to overcome these limitations by generating more accurate and robust datasets and developing deep learning-based methods including both hierarchical and multi-class approaches to predict the types of NABPs for any given protein. The deep learning models employ two layers of convolutional neural network and one layer of long short-term memory. Our approaches outperform existing DBP and RBP predictors with a balanced prediction between DBPs and RBPs, and are more practically useful in identifying novel NABPs. The multi-class approach greatly improves the prediction accuracy of DBPs and RBPs, especially for the DBPs with ~12% improvement. Moreover, we explored the prediction accuracy of single-stranded DNA binding proteins and their effect on the overall prediction accuracy of NABP predictions.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| | - Jun-tao Guo
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States
| |
Collapse
|
15
|
Wang X, Li P, Wang R, Gao X. PseUpred-ELPSO Is an Ensemble Learning Predictor with Particle Swarm Optimizer for Improving the Prediction of RNA Pseudouridine Sites. BIOLOGY 2024; 13:248. [PMID: 38666860 PMCID: PMC11048358 DOI: 10.3390/biology13040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
RNA pseudouridine modification exists in different RNA types of many species, and it has a significant role in regulating the expression of biological processes. To understand the functional mechanisms for RNA pseudouridine sites, the accurate identification of pseudouridine sites in RNA sequences is essential. Although several fast and inexpensive computational methods have been proposed, the challenge of improving recognition accuracy and generalization still exists. This study proposed a novel ensemble predictor called PseUpred-ELPSO for improved RNA pseudouridine site prediction. After analyzing the nucleotide composition preferences between RNA pseudouridine site sequences, two feature representations were determined and fed into the stacking ensemble framework. Then, using five tree-based machine learning classifiers as base classifiers, 30-dimensional RNA profiles are constructed to represent RNA sequences, and using the PSO algorithm, the weights of the RNA profiles were searched to further enhance the representation. A logistic regression classifier was used as a meta-classifier to complete the final predictions. Compared to the most advanced predictors, the performance of PseUpred-ELPSO is superior in both cross-validation and the independent test. Based on the PseUpred-ELPSO predictor, a free and easy-to-operate web server has been established, which will be a powerful tool for pseudouridine site identification.
Collapse
Affiliation(s)
- Xiao Wang
- School of Computer Science and Technology, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450002, China; (X.W.); (P.L.)
- Henan Provincial Key Laboratory of Data Intelligence for Food Safety, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450002, China
| | - Pengfei Li
- School of Computer Science and Technology, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450002, China; (X.W.); (P.L.)
| | - Rong Wang
- School of Electronic Information, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450002, China;
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Jia P, Zhang F, Wu C, Li M. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond. Brief Bioinform 2024; 25:bbae162. [PMID: 38739759 PMCID: PMC11089422 DOI: 10.1093/bib/bbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/31/2024] [Indexed: 05/16/2024] Open
Abstract
Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.
Collapse
Affiliation(s)
- Pengzhen Jia
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chaojin Wu
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| |
Collapse
|
17
|
Liu M, Wu T, Li X, Zhu Y, Chen S, Huang J, Zhou F, Liu H. ACPPfel: Explainable deep ensemble learning for anticancer peptides prediction based on feature optimization. Front Genet 2024; 15:1352504. [PMID: 38487252 PMCID: PMC10937565 DOI: 10.3389/fgene.2024.1352504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Background: Cancer is a significant global health problem that continues to cause a high number of deaths worldwide. Traditional cancer treatments often come with risks that can compromise the functionality of vital organs. As a potential alternative to these conventional therapies, Anticancer peptides (ACPs) have garnered attention for their small size, high specificity, and reduced toxicity, making them as a promising option for cancer treatments. Methods: However, the process of identifying effective ACPs through wet-lab screening experiments is time-consuming and requires a lot of labor. To overcome this challenge, a deep ensemble learning method is constructed to predict anticancer peptides (ACPs) in this study. To evaluate the reliability of the framework, four different datasets are used in this study for training and testing. During the training process of the model, integration of feature selection methods, feature dimensionality reduction measures, and optimization of the deep ensemble model are carried out. Finally, we explored the interpretability of features that affected the final prediction results and built a web server platform to facilitate anticancer peptides prediction, which can be used by all researchers for further studies. This web server can be accessed at http://lmylab.online:5001/. Results: The result of this study achieves an accuracy rate of 98.53% and an AUC (Area under Curve) value of 0.9972 on the ACPfel dataset, it has improvements on other datasets as well.
Collapse
Affiliation(s)
- Mingyou Liu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Tao Wu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
| | - Xue Li
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yingxue Zhu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Sen Chen
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology, Chengdu, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Fengfeng Zhou
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| | - Hongmei Liu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, China
- Engineering Research Center of Health Medicine Biotechnology of Guizhou Province, Guizhou Medical University, Guiyang, China
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
18
|
Zhang J, Basu S, Kurgan L. HybridDBRpred: improved sequence-based prediction of DNA-binding amino acids using annotations from structured complexes and disordered proteins. Nucleic Acids Res 2024; 52:e10. [PMID: 38048333 PMCID: PMC10810184 DOI: 10.1093/nar/gkad1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Current predictors of DNA-binding residues (DBRs) from protein sequences belong to two distinct groups, those trained on binding annotations extracted from structured protein-DNA complexes (structure-trained) vs. intrinsically disordered proteins (disorder-trained). We complete the first empirical analysis of predictive performance across the structure- and disorder-annotated proteins for a representative collection of ten predictors. Majority of the structure-trained tools perform well on the structure-annotated proteins while doing relatively poorly on the disorder-annotated proteins, and vice versa. Several methods make accurate predictions for the structure-annotated proteins or the disorder-annotated proteins, but none performs highly accurately for both annotation types. Moreover, most predictors make excessive cross-predictions for the disorder-annotated proteins, where residues that interact with non-DNA ligand types are predicted as DBRs. Motivated by these results, we design, validate and deploy an innovative meta-model, hybridDBRpred, that uses deep transformer network to combine predictions generated by three best current predictors. HybridDBRpred provides accurate predictions and low levels of cross-predictions across the two annotation types, and is statistically more accurate than each of the ten tools and baseline meta-predictors that rely on averaging and logistic regression. We deploy hybridDBRpred as a convenient web server at http://biomine.cs.vcu.edu/servers/hybridDBRpred/ and provide the corresponding source code at https://github.com/jianzhang-xynu/hybridDBRpred.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, PR China
| | - Sushmita Basu
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
19
|
Arif M, Fang G, Fida H, Musleh S, Yu DJ, Alam T. iMRSAPred: Improved Prediction of Anti-MRSA Peptides Using Physicochemical and Pairwise Contact-Energy Properties of Amino Acids. ACS OMEGA 2024; 9:2874-2883. [PMID: 38250405 PMCID: PMC10795061 DOI: 10.1021/acsomega.3c08303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a growing concern for human lives worldwide. Anti-MRSA peptides act as potential antibiotic agents and play significant role to combat MRSA infection. Traditional laboratory-based methods for annotating Anti-MRSA peptides are although precise but quite challenging, costly, and time-consuming. Therefore, computational methods capable of identifying Anti-MRSA peptides accelerate the drug designing process for treating bacterial infections. In this study, we developed a novel sequence-based predictor "iMRSAPred" for screening Anti-MRSA peptides by incorporating energy estimation and physiochemical and sequential information. We successfully resolved the skewed imbalance phenomena by using synthetic minority oversampling technique plus Tomek link (SMOTETomek) algorithm. Furthermore, the Shapley additive explanation method was leveraged to analyze the impact of top-ranked features in the prediction task. We evaluated multiple machine learning algorithms, i.e., CatBoost, Cascade Deep Forest, Kernel and Tree Boosting, support vector machine, and HistGBoost classifiers by 10-fold cross-validation and independent testing. The proposed iMRSAPred method significantly improved the overall performance in terms of accuracy and Matthew's correlation coefficient (MCC) by 5.45 and 0.083%, respectively, on the training data set. On the independent data set, iMRSAPred improved accuracy and MCC by 3.98 and 0.055%, respectively. We believe that the proposed method would be useful in large-scale Anti-MRSA peptide prediction and provide insights into other bioactive peptides.
Collapse
Affiliation(s)
- Muhammad Arif
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| | - Ge Fang
- State
Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts Telecommunications
9 Wenyuan Road, Nanjing 210023, P. R. China
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bankok 10700, Thailand
| | - Huma Fida
- Department
of Microbiology, Abdul Wali Khan University, Mardan 23200, KPK, Pakistan
| | - Saleh Musleh
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| | - Dong-Jun Yu
- School
of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing 210023, China
| | - Tanvir Alam
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| |
Collapse
|
20
|
Charoenkwan P, Waramit S, Chumnanpuen P, Schaduangrat N, Shoombuatong W. TROLLOPE: A novel sequence-based stacked approach for the accelerated discovery of linear T-cell epitopes of hepatitis C virus. PLoS One 2023; 18:e0290538. [PMID: 37624802 PMCID: PMC10456195 DOI: 10.1371/journal.pone.0290538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a concerning health issue that causes chronic liver diseases. Despite many successful therapeutic outcomes, no effective HCV vaccines are currently available. Focusing on T cell activity, the primary effector for HCV clearance, T cell epitopes of HCV (TCE-HCV) are considered promising elements to accelerate HCV vaccine efficacy. Thus, accurate and rapid identification of TCE-HCVs is recommended to obtain more efficient therapy for chronic HCV infection. In this study, a novel sequence-based stacked approach, termed TROLLOPE, is proposed to accurately identify TCE-HCVs from sequence information. Specifically, we employed 12 different sequence-based feature descriptors from heterogeneous perspectives, such as physicochemical properties, composition-transition-distribution information and composition information. These descriptors were used in cooperation with 12 popular machine learning (ML) algorithms to create 144 base-classifiers. To maximize the utility of these base-classifiers, we used a feature selection strategy to determine a collection of potential base-classifiers and integrated them to develop the meta-classifier. Comprehensive experiments based on both cross-validation and independent tests demonstrated the superior predictive performance of TROLLOPE compared with conventional ML classifiers, with cross-validation and independent test accuracies of 0.745 and 0.747, respectively. Finally, a user-friendly online web server of TROLLOPE (http://pmlabqsar.pythonanywhere.com/TROLLOPE) has been developed to serve research efforts in the large-scale identification of potential TCE-HCVs for follow-up experimental verification.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Sajee Waramit
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Yan K, Feng J, Huang J, Wu H. iDRPro-SC: identifying DNA-binding proteins and RNA-binding proteins based on subfunction classifiers. Brief Bioinform 2023:bbad251. [PMID: 37405873 DOI: 10.1093/bib/bbad251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Nucleic acid-binding proteins are proteins that interact with DNA and RNA to regulate gene expression and transcriptional control. The pathogenesis of many human diseases is related to abnormal gene expression. Therefore, recognizing nucleic acid-binding proteins accurately and efficiently has important implications for disease research. To address this question, some scientists have proposed the method of using sequence information to identify nucleic acid-binding proteins. However, different types of nucleic acid-binding proteins have different subfunctions, and these methods ignore their internal differences, so the performance of the predictor can be further improved. In this study, we proposed a new method, called iDRPro-SC, to predict the type of nucleic acid-binding proteins based on the sequence information. iDRPro-SC considers the internal differences of nucleic acid-binding proteins and combines their subfunctions to build a complete dataset. Additionally, we used an ensemble learning to characterize and predict nucleic acid-binding proteins. The results of the test dataset showed that iDRPro-SC achieved the best prediction performance and was superior to the other existing nucleic acid-binding protein prediction methods. We have established a web server that can be accessed online: http://bliulab.net/iDRPro-SC.
Collapse
Affiliation(s)
- Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jiawei Feng
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Huang
- Huajian Yutong Technology (Beijing) Co., Ltd
- State Key Laboratory of Media Convergence Production Technology and Systems, Beijing China,100803
- Xinhua New Media Culture Communication Co., Ltd
| | - Hao Wu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Liu S, Liang Y, Li J, Yang S, Liu M, Liu C, Yang D, Zuo Y. Integrating reduced amino acid composition into PSSM for improving copper ion-binding protein prediction. Int J Biol Macromol 2023:124993. [PMID: 37307968 DOI: 10.1016/j.ijbiomac.2023.124993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Copper ion-binding proteins play an essential role in metabolic processes and are critical factors in many diseases, such as breast cancer, lung cancer, and Menkes disease. Many algorithms have been developed for predicting metal ion classification and binding sites, but none have been applied to copper ion-binding proteins. In this study, we developed a copper ion-bound protein classifier, RPCIBP, which integrating the reduced amino acid composition into position-specific score matrix (PSSM). The reduced amino acid composition filters out a large number of useless evolutionary features, improving the operational efficiency and predictive ability of the model (feature dimension from 2900 to 200, ACC from 83 % to 85.1 %). Compared with the basic model using only three sequence feature extraction methods (ACC in training set between 73.8 %-86.2 %, ACC in test set between 69.3 %-87.5 %), the model integrating the evolutionary features of the reduced amino acid composition showed higher accuracy and robustness (ACC in training set between 83.1 %-90.8 %, ACC in test set between 79.1 %-91.9 %). Best copper ion-binding protein classifiers filtered by feature selection progress were deployed in a user-friendly web server (http://bioinfor.imu.edu.cn/RPCIBP). RPCIBP can accurately predict copper ion-binding proteins, which is convenient for further structural and functional studies, and conducive to mechanism exploration and target drug development.
Collapse
Affiliation(s)
- Shanghua Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia International Mongolian Hospital, Hohhot 010065, China
| | - Yuchao Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; Digital College, Inner Mongolia Intelligent Union Big Data Academy, Hohhot 010010, China
| | - Jinzhao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Ming Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Chengfang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Dezhi Yang
- Inner Mongolia International Mongolian Hospital, Hohhot 010065, China.
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia International Mongolian Hospital, Hohhot 010065, China; Digital College, Inner Mongolia Intelligent Union Big Data Academy, Hohhot 010010, China.
| |
Collapse
|
23
|
Chen R, Li F, Guo X, Bi Y, Li C, Pan S, Coin LJM, Song J. ATTIC is an integrated approach for predicting A-to-I RNA editing sites in three species. Brief Bioinform 2023; 24:bbad170. [PMID: 37150785 PMCID: PMC10565902 DOI: 10.1093/bib/bbad170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
A-to-I editing is the most prevalent RNA editing event, which refers to the change of adenosine (A) bases to inosine (I) bases in double-stranded RNAs. Several studies have revealed that A-to-I editing can regulate cellular processes and is associated with various human diseases. Therefore, accurate identification of A-to-I editing sites is crucial for understanding RNA-level (i.e. transcriptional) modifications and their potential roles in molecular functions. To date, various computational approaches for A-to-I editing site identification have been developed; however, their performance is still unsatisfactory and needs further improvement. In this study, we developed a novel stacked-ensemble learning model, ATTIC (A-To-I ediTing predICtor), to accurately identify A-to-I editing sites across three species, including Homo sapiens, Mus musculus and Drosophila melanogaster. We first comprehensively evaluated 37 RNA sequence-derived features combined with 14 popular machine learning algorithms. Then, we selected the optimal base models to build a series of stacked ensemble models. The final ATTIC framework was developed based on the optimal models improved by the feature selection strategy for specific species. Extensive cross-validation and independent tests illustrate that ATTIC outperforms state-of-the-art tools for predicting A-to-I editing sites. We also developed a web server for ATTIC, which is publicly available at http://web.unimelb-bioinfortools.cloud.edu.au/ATTIC/. We anticipate that ATTIC can be utilized as a useful tool to accelerate the identification of A-to-I RNA editing events and help characterize their roles in post-transcriptional regulation.
Collapse
Affiliation(s)
- Ruyi Chen
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Fuyi Li
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Xudong Guo
- College of Information Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Yue Bi
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Shirui Pan
- School of Information and Communication Technology, Griffith University, QLD 4222, Australia
| | - Lachlan J M Coin
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC 3000, Australia
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
- Monash Data Futures Institute, Monash University, VIC 3800, Australia
| |
Collapse
|
24
|
Schaduangrat N, Anuwongcharoen N, Charoenkwan P, Shoombuatong W. DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists. J Cheminform 2023; 15:50. [PMID: 37149650 PMCID: PMC10163717 DOI: 10.1186/s13321-023-00721-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/08/2023] [Indexed: 05/08/2023] Open
Abstract
Drug resistance represents a major obstacle to therapeutic innovations and is a prevalent feature in prostate cancer (PCa). Androgen receptors (ARs) are the hallmark therapeutic target for prostate cancer modulation and AR antagonists have achieved great success. However, rapid emergence of resistance contributing to PCa progression is the ultimate burden of their long-term usage. Hence, the discovery and development of AR antagonists with capability to combat the resistance, remains an avenue for further exploration. Therefore, this study proposes a novel deep learning (DL)-based hybrid framework, named DeepAR, to accurately and rapidly identify AR antagonists by using only the SMILES notation. Specifically, DeepAR is capable of extracting and learning the key information embedded in AR antagonists. Firstly, we established a benchmark dataset by collecting active and inactive compounds against AR from the ChEMBL database. Based on this dataset, we developed and optimized a collection of baseline models by using a comprehensive set of well-known molecular descriptors and machine learning algorithms. Then, these baseline models were utilized for creating probabilistic features. Finally, these probabilistic features were combined and used for the construction of a meta-model based on a one-dimensional convolutional neural network. Experimental results indicated that DeepAR is a more accurate and stable approach for identifying AR antagonists in terms of the independent test dataset, by achieving an accuracy of 0.911 and MCC of 0.823. In addition, our proposed framework is able to provide feature importance information by leveraging a popular computational approach, named SHapley Additive exPlanations (SHAP). In the meanwhile, the characterization and analysis of potential AR antagonist candidates were achieved through the SHAP waterfall plot and molecular docking. The analysis inferred that N-heterocyclic moieties, halogenated substituents, and a cyano functional group were significant determinants of potential AR antagonists. Lastly, we implemented an online web server by using DeepAR (at http://pmlabstack.pythonanywhere.com/DeepAR ). We anticipate that DeepAR could be a useful computational tool for community-wide facilitation of AR candidates from a large number of uncharacterized compounds.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Nuttapat Anuwongcharoen
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
25
|
Tellechea-Luzardo J, Stiebritz MT, Carbonell P. Transcription factor-based biosensors for screening and dynamic regulation. Front Bioeng Biotechnol 2023; 11:1118702. [PMID: 36814719 PMCID: PMC9939652 DOI: 10.3389/fbioe.2023.1118702] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Advances in synthetic biology and genetic engineering are bringing into the spotlight a wide range of bio-based applications that demand better sensing and control of biological behaviours. Transcription factor (TF)-based biosensors are promising tools that can be used to detect several types of chemical compounds and elicit a response according to the desired application. However, the wider use of this type of device is still hindered by several challenges, which can be addressed by increasing the current metabolite-activated transcription factor knowledge base, developing better methods to identify new transcription factors, and improving the overall workflow for the design of novel biosensor circuits. These improvements are particularly important in the bioproduction field, where researchers need better biosensor-based approaches for screening production-strains and precise dynamic regulation strategies. In this work, we summarize what is currently known about transcription factor-based biosensors, discuss recent experimental and computational approaches targeted at their modification and improvement, and suggest possible future research directions based on two applications: bioproduction screening and dynamic regulation of genetic circuits.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Martin T. Stiebritz
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), Valencia, Spain
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
26
|
Zhang X, Wang S, Xie L, Zhu Y. PseU-ST: A new stacked ensemble-learning method for identifying RNA pseudouridine sites. Front Genet 2023; 14:1121694. [PMID: 36741328 PMCID: PMC9892456 DOI: 10.3389/fgene.2023.1121694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Pseudouridine (Ψ) is one of the most abundant RNA modifications found in a variety of RNA types, and it plays a significant role in many biological processes. The key to studying the various biochemical functions and mechanisms of Ψ is to identify the Ψ sites. However, identifying Ψ sites using experimental methods is time-consuming and expensive. Therefore, it is necessary to develop computational methods that can accurately predict Ψ sites based on RNA sequence information. Methods: In this study, we proposed a new model called PseU-ST to identify Ψ sites in Homo sapiens (H. sapiens), Saccharomyces cerevisiae (S. cerevisiae), and Mus musculus (M. musculus). We selected the best six encoding schemes and four machine learning algorithms based on a comprehensive test of almost all of the RNA sequence encoding schemes available in the iLearnPlus software package, and selected the optimal features for each encoding scheme using chi-square and incremental feature selection algorithms. Then, we selected the optimal feature combination and the best base-classifier combination for each species through an extensive performance comparison and employed a stacking strategy to build the predictive model. Results: The results demonstrated that PseU-ST achieved better prediction performance compared with other existing models. The PseU-ST accuracy scores were 93.64%, 87.74%, and 89.64% on H_990, S_628, and M_944, respectively, representing increments of 13.94%, 6.05%, and 0.26%, respectively, higher than the best existing methods on the same benchmark training datasets. Conclusion: The data indicate that PseU-ST is a very competitive prediction model for identifying RNA Ψ sites in H. sapiens, M. musculus, and S. cerevisiae. In addition, we found that the Position-specific trinucleotide propensity based on single strand (PSTNPss) and Position-specific of three nucleotides (PS3) features play an important role in Ψ site identification. The source code for PseU-ST and the data are obtainable in our GitHub repository (https://github.com/jluzhangxinrubio/PseU-ST).
Collapse
|
27
|
Pradhan UK, Meher PK, Naha S, Pal S, Gupta A, Parsad R. PlDBPred: a novel computational model for discovery of DNA binding proteins in plants. Brief Bioinform 2023; 24:6840070. [PMID: 36416116 DOI: 10.1093/bib/bbac483] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
DNA-binding proteins (DBPs) play crucial roles in numerous cellular processes including nucleotide recognition, transcriptional control and the regulation of gene expression. Majority of the existing computational techniques for identifying DBPs are mainly applicable to human and mouse datasets. Even though some models have been tested on Arabidopsis, they produce poor accuracy when applied to other plant species. Therefore, it is imperative to develop an effective computational model for predicting plant DBPs. In this study, we developed a comprehensive computational model for plant specific DBPs identification. Five shallow learning and six deep learning models were initially used for prediction, where shallow learning methods outperformed deep learning algorithms. In particular, support vector machine achieved highest repeated 5-fold cross-validation accuracy of 94.0% area under receiver operating characteristic curve (AUC-ROC) and 93.5% area under precision recall curve (AUC-PR). With an independent dataset, the developed approach secured 93.8% AUC-ROC and 94.6% AUC-PR. While compared with the state-of-art existing tools by using an independent dataset, the proposed model achieved much higher accuracy. Overall results suggest that the developed computational model is more efficient and reliable as compared to the existing models for the prediction of DBPs in plants. For the convenience of the majority of experimental scientists, the developed prediction server PlDBPred is publicly accessible at https://iasri-sg.icar.gov.in/pldbpred/.The source code is also provided at https://iasri-sg.icar.gov.in/pldbpred/source_code.php for prediction using a large-size dataset.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi-110012, India
| | - Soumen Pal
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi-110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi 110012, India
| | - Rajender Parsad
- ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi-110012, India
| |
Collapse
|
28
|
Du X, Hu J. Deep Multi-Label Joint Learning for RNA and DNA-Binding Proteins Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:307-320. [PMID: 35148267 DOI: 10.1109/tcbb.2022.3150280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The recognition of DNA- (DBPs) and RNA-binding proteins (RBPs) is not only conducive to understanding cell function, but also a challenging task. Previous studies have shown that these proteins are usually considered separately due to different binding domains. In addition, due to the high similarity between DBPs and RBPs, it is possible for DBPs predictor to predict RBPs as DBPs, and vice versa, which leads to high cross-prediction rate. In this study, we creatively propose a novel deep multi-label joint learning framework to leverage the relationship between multiple labels and binding proteins. First, a multi-label variant network is designed to explore multi-scale context hidden information. Then, multi-label Long Short-Term Memory (multiLSTM) is used to mine the potential relationship between labels. Finally, the calibrated hidden features from variant network are considered for different levels of joint learning so that multiLSTM can better explore the correlation between them. Extensive experiments are also carried out to compare the proposed method with other existing methods. Furthermore, we also provide further insights into the importance of the relevant bioanalysis of proteins obtained from our model and summarize these binding proteins that are significantly related to a disease. Our method is freely available at http://39.108.90.186/dmlj.
Collapse
|
29
|
Gao W, Xu D, Li H, Du J, Wang G, Li D. Identification of adaptor proteins by incorporating deep learning and PSSM profiles. Methods 2023; 209:10-17. [PMID: 36427763 DOI: 10.1016/j.ymeth.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Adaptor proteins, also known as signal transduction adaptor proteins, are important proteins in signal transduction pathways, and play a role in connecting signal proteins for signal transduction between cells. Studies have shown that adaptor proteins are closely related to some diseases, such as tumors and diabetes. Therefore, it is very meaningful to construct a relevant model to accurately identify adaptor proteins. In recent years, many studies have used a position-specific scoring matrix (PSSM) and neural network methods to identify adaptor proteins. However, ordinary neural network models cannot correlate the contextual information in PSSM profiles well, so these studies usually process 20×N (N > 20) PSSM into 20×20 dimensions, which results in the loss of a large amount of protein information; This research proposes an efficient method that combines one-dimensional convolution (1-D CNN) and a bidirectional long short-term memory network (biLSTM) to identify adaptor proteins. The complete PSSM profiles are the input of the model, and the complete information of the protein is retained during the training process. We perform cross-validation during model training and test the performance of the model on an independent test set; in the data set with 1224 adaptor proteins and 11,078 non-adaptor proteins, five indicators including specificity, sensitivity, accuracy, area under the receiver operating characteristic curve (AUC) metric and Matthews correlation coefficient (MCC), were employed to evaluate model performance. On the independent test set, the specificity, sensitivity, accuracy and MCC were 0.817, 0.865, 0.823 and 0.465, respectively. Those results show that our method is better than the state-of-the art methods. This study is committed to improve the accuracy of adaptor protein identification, and laid a foundation for further research on diseases related to adaptor protein. This research provided a new idea for the application of deep learning related models in bioinformatics and computational biology.
Collapse
Affiliation(s)
- Wentao Gao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China
| | - Dali Xu
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China
| | - Hongfei Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China
| | - Junping Du
- Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia, School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Guohua Wang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China.
| | - Dan Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin 150000, China.
| |
Collapse
|
30
|
Wu Z, Basu S, Wu X, Kurgan L. qNABpredict: Quick, accurate, and taxonomy-aware sequence-based prediction of content of nucleic acid binding amino acids. Protein Sci 2023; 32:e4544. [PMID: 36519304 PMCID: PMC9798252 DOI: 10.1002/pro.4544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Protein sequence-based predictors of nucleic acid (NA)-binding include methods that predict NA-binding proteins and NA-binding residues. The residue-level tools produce more details but suffer high computational cost since they must predict every amino acid in the input sequence and rely on multiple sequence alignments. We propose an alternative approach that predicts content (fraction) of the NA-binding residues, offering more information than the protein-level prediction and much shorter runtime than the residue-level tools. Our first-of-its-kind content predictor, qNABpredict, relies on a small, rationally designed and fast-to-compute feature set that represents relevant characteristics extracted from the input sequence and a well-parametrized support vector regression model. We provide two versions of qNABpredict, a taxonomy-agnostic model that can be used for proteins of unknown taxonomic origin and more accurate taxonomy-aware models that are tailored to specific taxonomic kingdoms: archaea, bacteria, eukaryota, and viruses. Empirical tests on a low-similarity test dataset show that qNABpredict is 100 times faster and generates statistically more accurate content predictions when compared to the content extracted from results produced by the residue-level predictors. We also show that qNABpredict's content predictions can be used to improve results generated by the residue-level predictors. We release qNABpredict as a convenient webserver and source code at http://biomine.cs.vcu.edu/servers/qNABpredict/. This new tool should be particularly useful to predict details of protein-NA interactions for large protein families and proteomes.
Collapse
Affiliation(s)
- Zhonghua Wu
- School of Mathematical Sciences and LPMCNankai UniversityTianjinChina
| | - Sushmita Basu
- Department of Computer ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Xuantai Wu
- School of Mathematical Sciences and LPMCNankai UniversityTianjinChina
| | - Lukasz Kurgan
- Department of Computer ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
31
|
Yue ZX, Yan TC, Xu HQ, Liu YH, Hong YF, Chen GX, Xie T, Tao L. A systematic review on the state-of-the-art strategies for protein representation. Comput Biol Med 2023; 152:106440. [PMID: 36543002 DOI: 10.1016/j.compbiomed.2022.106440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The study of drug-target protein interaction is a key step in drug research. In recent years, machine learning techniques have become attractive for research, including drug research, due to their automated nature, predictive power, and expected efficiency. Protein representation is a key step in the study of drug-target protein interaction by machine learning, which plays a fundamental role in the ultimate accomplishment of accurate research. With the progress of machine learning, protein representation methods have gradually attracted attention and have consequently developed rapidly. Therefore, in this review, we systematically classify current protein representation methods, comprehensively review them, and discuss the latest advances of interest. According to the information extraction methods and information sources, these representation methods are generally divided into structure and sequence-based representation methods. Each primary class can be further divided into specific subcategories. As for the particular representation methods involve both traditional and the latest approaches. This review contains a comprehensive assessment of the various methods which researchers can use as a reference for their specific protein-related research requirements, including drug research.
Collapse
Affiliation(s)
- Zi-Xuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tian-Ci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Quan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Hong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan-Feng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Gong-Xing Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
32
|
Wang N, Zhang J, Liu B. iDRBP-EL: Identifying DNA- and RNA- Binding Proteins Based on Hierarchical Ensemble Learning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:432-441. [PMID: 34932484 DOI: 10.1109/tcbb.2021.3136905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Identification of DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs) from the primary sequences is essential for further exploring protein-nucleic acid interactions. Previous studies have shown that machine-learning-based methods can efficiently identify DBPs or RBPs. However, the information used in these methods is slightly unitary, and most of them only can predict DBPs or RBPs. In this study, we proposed a computational predictor iDRBP-EL to identify DNA- and RNA- binding proteins, and introduced hierarchical ensemble learning to integrate three level information. The method can integrate the information of different features, machine learning algorithms and data into one multi-label model. The ablation experiment showed that the fusion of different information can improve the prediction performance and overcome the cross-prediction problem. Experimental results on the independent datasets showed that iDRBP-EL outperformed all the other competing methods. Moreover, we established a user-friendly webserver iDRBP-EL (http://bliulab.net/iDRBP-EL), which can predict both DBPs and RBPs only based on protein sequences.
Collapse
|
33
|
Jiang H, Shang S, Sha Y, Zhang L, He N, Li L. EdeepSADPr: an extensive deep-learning architecture for prediction of the in situ crosstalks of serine phosphorylation and ADP-ribosylation. Front Cell Dev Biol 2023; 11:1149535. [PMID: 37187615 PMCID: PMC10175571 DOI: 10.3389/fcell.2023.1149535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
The in situ post-translational modification (PTM) crosstalk refers to the interactions between different types of PTMs that occur on the same residue site of a protein. The crosstalk sites generally have different characteristics from those with the single PTM type. Studies targeting the latter's features have been widely conducted, while studies on the former's characteristics are rare. For example, the characteristics of serine phosphorylation (pS) and serine ADP-ribosylation (SADPr) have been investigated, whereas those of their in situ crosstalks (pSADPr) are unknown. In this study, we collected 3,250 human pSADPr, 7,520 SADPr, 151,227 pS and 80,096 unmodified serine sites and explored the features of the pSADPr sites. We found that the characteristics of pSADPr sites are more similar to those of SADPr compared to pS or unmodified serine sites. Moreover, the crosstalk sites are likely to be phosphorylated by some kinase families (e.g., AGC, CAMK, STE and TKL) rather than others (e.g., CK1 and CMGC). Additionally, we constructed three classifiers to predict pSADPr sites from the pS dataset, the SADPr dataset and the protein sequences separately. We built and evaluated five deep-learning classifiers in ten-fold cross-validation and independent test datasets. We also used the classifiers as base classifiers to develop a few stacking-based ensemble classifiers to improve performance. The best classifiers had the AUC values of 0.700, 0.914 and 0.954 for recognizing pSADPr sites from the SADPr, pS and unmodified serine sites, respectively. The lowest prediction accuracy was achieved by separating pSADPr and SADPr sites, which is consistent with the observation that pSADPr's characteristics are more similar to those of SADPr than the rest. Finally, we developed an online tool for extensively predicting human pSADPr sites based on the CNNOH classifier, dubbed EdeepSADPr. It is freely available through http://edeepsadpr.bioinfogo.org/. We expect our investigation will promote a comprehensive understanding of crosstalks.
Collapse
Affiliation(s)
- Haoqiang Jiang
- College of Basic Medicine, Qingdao University, Qingdao, China
- Sino Genomics Technology Co., Ltd., Qingdao, China
| | - Shipeng Shang
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Yutong Sha
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Zhang
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Ningning He
- College of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Li
- College of Basic Medicine, Qingdao University, Qingdao, China
- Faculty of Biomedical and Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- *Correspondence: Lei Li,
| |
Collapse
|
34
|
Wei Q, Zhang Q, Gao H, Song T, Salhi A, Yu B. DEEPStack-RBP: Accurate identification of RNA-binding proteins based on autoencoder feature selection and deep stacking ensemble classifier. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
35
|
Schaduangrat N, Anuwongcharoen N, Moni MA, Lio' P, Charoenkwan P, Shoombuatong W. StackPR is a new computational approach for large-scale identification of progesterone receptor antagonists using the stacking strategy. Sci Rep 2022; 12:16435. [PMID: 36180453 PMCID: PMC9525257 DOI: 10.1038/s41598-022-20143-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Progesterone receptors (PRs) are implicated in various cancers since their presence/absence can determine clinical outcomes. The overstimulation of progesterone can facilitate oncogenesis and thus, its modulation through PR inhibition is urgently needed. To address this issue, a novel stacked ensemble learning approach (termed StackPR) is presented for fast, accurate, and large-scale identification of PR antagonists using only SMILES notation without the need for 3D structural information. We employed six popular machine learning (ML) algorithms (i.e., logistic regression, partial least squares, k-nearest neighbor, support vector machine, extremely randomized trees, and random forest) coupled with twelve conventional molecular descriptors to create 72 baseline models. Then, a genetic algorithm in conjunction with the self-assessment-report approach was utilized to determine m out of the 72 baseline models as means of developing the final meta-predictor using the stacking strategy and tenfold cross-validation test. Experimental results on the independent test dataset show that StackPR achieved impressive predictive performance with an accuracy of 0.966 and Matthew's coefficient correlation of 0.925. In addition, analysis based on the SHapley Additive exPlanation algorithm and molecular docking indicates that aliphatic hydrocarbons and nitrogen-containing substructures were the most important features for having PR antagonist activity. Finally, we implemented an online webserver using StackPR, which is freely accessible at http://pmlabstack.pythonanywhere.com/StackPR . StackPR is anticipated to be a powerful computational tool for the large-scale identification of unknown PR antagonist candidates for follow-up experimental validation.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Mohammad Ali Moni
- Artificial Intelligence & Digital Health Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Pietro Lio'
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD, UK
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
36
|
DBP-iDWT: Improving DNA-Binding Proteins Prediction Using Multi-Perspective Evolutionary Profile and Discrete Wavelet Transform. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2987407. [PMID: 36211019 PMCID: PMC9534628 DOI: 10.1155/2022/2987407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
DNA-binding proteins (DBPs) have crucial biotic activities including DNA replication, recombination, and transcription. DBPs are highly concerned with chronic diseases and are used in the manufacturing of antibiotics and steroids. A series of predictors were established to identify DBPs. However, researchers are still working to further enhance the identification of DBPs. This research designed a novel predictor to identify DBPs more accurately. The features from the sequences are transformed by F-PSSM (Filtered position-specific scoring matrix), PSSM-DPC (Position specific scoring matrix-dipeptide composition), and R-PSSM (Reduced position-specific scoring matrix). To eliminate the noisy attributes, we extended DWT (discrete wavelet transform) to F-PSSM, PSSM-DPC, and R-PSSM and introduced three novel descriptors, namely, F-PSSM-DWT, PSSM-DPC-DWT, and R-PSSM-DWT. Onward, the training of the four models were performed using LiXGB (Light eXtreme gradient boosting), XGB (eXtreme gradient boosting, ERT (extremely randomized trees), and Adaboost. LiXGB with R-PSSM-DWT has attained 6.55% higher accuracy on training and 5.93% on testing dataset than the best existing predictors. The results reveal the excellent performance of our novel predictor over the past studies. DBP-iDWT would be fruitful for establishing more operative therapeutic strategies for fatal disease treatment.
Collapse
|
37
|
Charoenkwan P, Schaduangrat N, Lio’ P, Moni MA, Shoombuatong W, Manavalan B. Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework. iScience 2022; 25:104883. [PMID: 36046193 PMCID: PMC9421381 DOI: 10.1016/j.isci.2022.104883] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Discovery of potential drugs requires rapid and precise identification of drug targets. Although traditional experimental methodologies can accurately identify drug targets, they are time-consuming and inappropriate for high-throughput screening. Computational approaches based on machine learning (ML) algorithms can expedite the prediction of druggable proteins; however, the performance of the existing computational methods remains unsatisfactory. This study proposes a computational tool, SPIDER, to enhance the accurate prediction of druggable proteins. SPIDER employs various feature descriptors pertaining to several aspects, including physicochemical properties, compositional information, and composition-transition-distribution information, coupled with well-known ML algorithms to facilitate the construction of the final meta-predictor. The experimental results showed that SPIDER enabled more precise and robust prediction of druggable proteins than the baseline models and current existing methods in terms of the independent test dataset. An online web server was established and made freely available online.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Pietro Lio’
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
| | - Mohammad Ali Moni
- Artificial Intelligence & Digital Health, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|
38
|
Arif M, Kabir M, Ahmed S, Khan A, Ge F, Khelifi A, Yu DJ. DeepCPPred: A Deep Learning Framework for the Discrimination of Cell-Penetrating Peptides and Their Uptake Efficiencies. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2749-2759. [PMID: 34347603 DOI: 10.1109/tcbb.2021.3102133] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-penetrating peptides (CPPs) are special peptides capable of carrying a variety of bioactive molecules, such as genetic materials, short interfering RNAs and nanoparticles, into cells. Recently, research on CPP has gained substantial interest from researchers, and the biological mechanisms of CPPS have been assessed in the context of safe drug delivery agents and therapeutic applications. Correct identification and synthesis of CPPs using traditional biochemical methods is an extremely slow, expensive and laborious task particularly due to the large volume of unannotated peptide sequences accumulating in the World Bank repository. Hence, a powerful bioinformatics predictor that rapidly identifies CPPs with a high recognition rate is urgently needed. To date, numerous computational methods have been developed for CPP prediction. However, the available machine-learning (ML) tools are unable to distinguish both the CPPs and their uptake efficiencies. This study aimed to develop a two-layer deep learning framework named DeepCPPred to identify both CPPs in the first phase and peptide uptake efficiency in the second phase. The DeepCPPred predictor first uses four types of descriptors that cover evolutionary, energy estimation, reduced sequence and amino-acid contact information. Then, the extracted features are optimized through the elastic net algorithm and fed into a cascade deep forest algorithm to build the final CPP model. The proposed method achieved 99.45 percent overall accuracy with the CPP924 benchmark dataset in the first layer and 95.43 percent accuracy in the second layer with the CPPSite3 dataset using a 5-fold cross-validation test. Thus, our proposed bioinformatics tool surpassed all the existing state-of-the-art sequence-based CPP approaches.
Collapse
|
39
|
Prediction of anti-inflammatory peptides by a sequence-based stacking ensemble model named AIPStack. iScience 2022; 25:104967. [PMID: 36093066 PMCID: PMC9449674 DOI: 10.1016/j.isci.2022.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Accurate and efficient identification of anti-inflammatory peptides (AIPs) is crucial for the treatment of inflammation. Here, we proposed a two-layer stacking ensemble model, AIPStack, to effectively predict AIPs. At first, we constructed a new dataset for model building and validation. Then, peptide sequences were represented by hybrid features, which were fused by two amino acid composition descriptors. Next, the stacking ensemble model was constructed by random forest and extremely randomized tree as the base-classifiers and logistic regression as the meta-classifier to receive the outputs from the base-classifiers. AIPStack achieved an AUC of 0.819, accuracy of 0.755, and MCC of 0.510 on the independent set 3, which were higher than other AIP predictors. Furthermore, the essential sequence features were highlighted by the Shapley Additive exPlanation (SHAP) method. It is anticipated that AIPStack could be used for AIP prediction in a high-throughput manner and facilitate the hypothesis-driven experimental design. AIPStack model was developed for the prediction of anti-inflammatory peptides The hybrid features were used to describe the peptide sequences The proposed model AIPStack outperformed existing ones SHAP was used to highlight the essential features required for AIP prediction
Collapse
|
40
|
Guo JT, Malik F. Single-Stranded DNA Binding Proteins and Their Identification Using Machine Learning-Based Approaches. Biomolecules 2022; 12:biom12091187. [PMID: 36139026 PMCID: PMC9496475 DOI: 10.3390/biom12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Single-stranded DNA (ssDNA) binding proteins (SSBs) are critical in maintaining genome stability by protecting the transient existence of ssDNA from damage during essential biological processes, such as DNA replication and gene transcription. The single-stranded region of telomeres also requires protection by ssDNA binding proteins from being attacked in case it is wrongly recognized as an anomaly. In addition to their critical roles in genome stability and integrity, it has been demonstrated that ssDNA and SSB-ssDNA interactions play critical roles in transcriptional regulation in all three domains of life and viruses. In this review, we present our current knowledge of the structure and function of SSBs and the structural features for SSB binding specificity. We then discuss the machine learning-based approaches that have been developed for the prediction of SSBs from double-stranded DNA (dsDNA) binding proteins (DSBs).
Collapse
|
41
|
Feng J, Wang N, Zhang J, Liu B. iDRBP-ECHF: Identifying DNA- and RNA-binding proteins based on extensible cubic hybrid framework. Comput Biol Med 2022; 149:105940. [PMID: 36044786 DOI: 10.1016/j.compbiomed.2022.105940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/10/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
Proteins interact with nucleic acids to regulate the life activities of organisms. Therefore, how to accurately and efficiently identify nucleic acid-binding proteins (NABPs) is particularly significant. Some sequence-based computational methods have been proposed to identify DNA- and RNA-binding proteins in previous studies. However, the benchmark datasets used by these methods ignore the proportion of NABPs in the real world, and some integration methods only integrate traditional machine learning algorithms, resulting in limited prediction performance. In this study, we proposed a sequence-based method called iDRBP-ECHF to predict the DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs). We constructed a benchmark dataset by considering the proportion of positive and negative samples in the real world, and used down-sampling to generate three relatively balanced datasets to train the iDRBP-ECHF. In addition, we incorporated the deep learning algorithms into the framework to obtain a more compact high-level feature representation of the input data. The results on two independent datasets show that it achieves the most advanced performance and is superior to the other existing sequence-based DBP and RBP prediction methods. In addition, we set up a webserver iDRBP-ECHF, which can be accessed at http://bliulab.net/iDRBP-ECHF.
Collapse
Affiliation(s)
- Jiawei Feng
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ning Wang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jun Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China.
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
42
|
Patiyal S, Dhall A, Raghava GPS. A deep learning-based method for the prediction of DNA interacting residues in a protein. Brief Bioinform 2022; 23:6658239. [PMID: 35943134 DOI: 10.1093/bib/bbac322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
DNA-protein interaction is one of the most crucial interactions in the biological system, which decides the fate of many processes such as transcription, regulation and splicing of genes. In this study, we trained our models on a training dataset of 646 DNA-binding proteins having 15 636 DNA interacting and 298 503 non-interacting residues. Our trained models were evaluated on an independent dataset of 46 DNA-binding proteins having 965 DNA interacting and 9911 non-interacting residues. All proteins in the independent dataset have less than 30% of sequence similarity with proteins in the training dataset. A wide range of traditional machine learning and deep learning (1D-CNN) techniques-based models have been developed using binary, physicochemical properties and Position-Specific Scoring Matrix (PSSM)/evolutionary profiles. In the case of machine learning technique, eXtreme Gradient Boosting-based model achieved a maximum area under the receiver operating characteristics (AUROC) curve of 0.77 on the independent dataset using PSSM profile. Deep learning-based model achieved the highest AUROC of 0.79 on the independent dataset using a combination of all three profiles. We evaluated the performance of existing methods on the independent dataset and observed that our proposed method outperformed all the existing methods. In order to facilitate scientific community, we developed standalone software and web server, which are accessible from https://webs.iiitd.edu.in/raghava/dbpred.
Collapse
Affiliation(s)
- Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase 3, New Delhi-110020, India
| |
Collapse
|
43
|
FRTpred: A novel approach for accurate prediction of protein folding rate and type. Comput Biol Med 2022; 149:105911. [DOI: 10.1016/j.compbiomed.2022.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
|
44
|
Zou H, Yang F, Yin Z. Integrating multiple sequence features for identifying anticancer peptides. Comput Biol Chem 2022; 99:107711. [DOI: 10.1016/j.compbiolchem.2022.107711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 11/03/2022]
|
45
|
Wang N, Zhang J, Liu B. IDRBP-PPCT: Identifying Nucleic Acid-Binding Proteins Based on Position-Specific Score Matrix and Position-Specific Frequency Matrix Cross Transformation. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2284-2293. [PMID: 33780341 DOI: 10.1109/tcbb.2021.3069263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs) are two important nucleic acid-binding proteins (NABPs), which play important roles in biological processes such as replication, translation and transcription of genetic material. Some proteins (DRBPs) bind to both DNA and RNA, also play a key role in gene expression. Identification of DBPs, RBPs and DRBPs is important to study protein-nucleic acid interactions. Computational methods are increasingly being proposed to automatically identify DNA- or RNA-binding proteins based only on protein sequences. One challenge is to design an effective protein representation method to convert protein sequences into fixed-dimension feature vectors. In this study, we proposed a novel protein representation method called Position-Specific Scoring Matrix (PSSM) and Position-Specific Frequency Matrix (PSFM) Cross Transformation (PPCT) to represent protein sequences. This method contains the evolutionary information in PSSM and PSFM, and their correlations. A new computational predictor called IDRBP-PPCT was proposed by combining PPCT and the two-layer framework based on the random forest algorithm to identify DBPs, RBPs and DRBPs. The experimental results on the independent dataset and the tomato genome proved the effectiveness of the proposed method. A user-friendly web-server of IDRBP-PPCT was constructed, which is freely available at http://bliulab.net/IDRBP-PPCT.
Collapse
|
46
|
Ali F, Kumar H, Patil S, Kotecha K, Banjar A, Daud A. Target-DBPPred: An intelligent model for prediction of DNA-binding proteins using discrete wavelet transform based compression and light eXtreme gradient boosting. Comput Biol Med 2022; 145:105533. [PMID: 35447463 DOI: 10.1016/j.compbiomed.2022.105533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/03/2022]
Abstract
DNA-protein interaction is a critical biological process that performs influential activities, including DNA transcription and recombination. DBPs (DNA-binding proteins) are closely associated with different kinds of human diseases (asthma, cancer, and AIDS), while some of the DBPs are used in the production of antibiotics, steroids, and anti-inflammatories. Several methods have been reported for the prediction of DBPs. However, a more intelligent method is still highly desirable for the accurate prediction of DBPs. This study presents an intelligent computational method, Target-DBPPred, to improve DBPs prediction. Important features from primary protein sequences are investigated via a novel feature descriptor, called EDF-PSSM-DWT (Evolutionary difference formula position-specific scoring matrix-discrete wavelet transform) and several other multi-evolutionary methods, including F-PSSM (Filtered position-specific scoring matrix), EDF-PSSM (Evolutionary difference formula position-specific scoring matrix), PSSM-DPC (Position-specific scoring matrix-dipeptide composition), and Lead-BiPSSM (Lead-bigram-position specific scoring matrix) to encapsulate diverse multivariate features. The best feature set from the features of each descriptor is selected using sequential forward selection (SFS). Further, four models are trained using Adaboost, XGB (eXtreme gradient boosting), ERT (extremely randomized trees), and LiXGB (Light eXtreme gradient boosting) classifiers. LiXGB, with the best feature set of EDF-PSSM-DWT, has attained 6.69% and 15.07% higher performance in terms of accuracies using training and testing datasets, respectively. The obtained results verify the improved performance of our proposed predictor over the existing predictors.
Collapse
Affiliation(s)
- Farman Ali
- Department of Elementary and Secondary Education, Peshawar, Khyber Pakhtunkhwa, Pakistan; School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Harish Kumar
- Department of Computer Science, College of Computer Science, King Khalid University, Abha, Saudi Arabia
| | - Shruti Patil
- Symbiosis Institute of Technology, Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International University, Pune, India
| | - Ketan Kotecha
- Symbiosis Institute of Technology, Symbiosis Centre for Applied Artificial Intelligence, Symbiosis International University, Pune, India.
| | - Ameen Banjar
- Department of Information Systems, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Ali Daud
- Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, School of Information Engineering, Zhejiang Ocean University, Zhoushan, 316022, China; Department of Computer Science and Artificial Intelligence, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
47
|
Chen Y, Li Z, Li Z. Prediction of Plant Resistance Proteins Based on Pairwise Energy Content and Stacking Framework. FRONTIERS IN PLANT SCIENCE 2022; 13:912599. [PMID: 35712582 PMCID: PMC9194944 DOI: 10.3389/fpls.2022.912599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Plant resistance proteins (R proteins) recognize effector proteins secreted by pathogenic microorganisms and trigger an immune response against pathogenic microbial infestation. Accurate identification of plant R proteins is an important research topic in plant pathology. Plant R protein prediction has achieved many research results. Recently, some machine learning-based methods have emerged to identify plant R proteins. Still, most of them only rely on protein sequence features, which ignore inter-amino acid features, thus limiting the further improvement of plant R protein prediction performance. In this manuscript, we propose a method called StackRPred to predict plant R proteins. Specifically, the StackRPred first obtains plant R protein feature information from the pairwise energy content of residues; then, the obtained feature information is fed into the stacking framework for training to construct a prediction model for plant R proteins. The results of both the five-fold cross-validation and independent test validation show that our proposed method outperforms other state-of-the-art methods, indicating that StackRPred is an effective tool for predicting plant R proteins. It is expected to bring some favorable contribution to the study of plant R proteins.
Collapse
Affiliation(s)
- Yifan Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Zejun Li
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Zhiyong Li
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| |
Collapse
|
48
|
Yan J, Jiang T, Liu J, Lu Y, Guan S, Li H, Wu H, Ding Y. DNA-binding protein prediction based on deep transfer learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:7719-7736. [PMID: 35801442 DOI: 10.3934/mbe.2022362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of DNA binding proteins (DBPs) is of great importance in the biomedical field and plays a key role in this field. At present, many researchers are working on the prediction and detection of DBPs. Traditional DBP prediction mainly uses machine learning methods. Although these methods can obtain relatively high pre-diction accuracy, they consume large quantities of human effort and material resources. Transfer learning has certain advantages in dealing with such prediction problems. Therefore, in the present study, two features were extracted from a protein sequence, a transfer learning method was used, and two classical transfer learning algorithms were compared to transfer samples and construct data sets. In the final step, DBPs are detected by building a deep learning neural network model in a way that uses attention mechanisms.
Collapse
Affiliation(s)
- Jun Yan
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Tengsheng Jiang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Junkai Liu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yaoyao Lu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Shixuan Guan
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haiou Li
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hongjie Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Smart City Research Institute, Suzhou University of Science and Technology, Suzhou, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
49
|
Arya A, Mary Varghese D, Kumar Verma A, Ahmad S. Inadequacy of evolutionary profiles vis-a-vis single sequences in predicting transient DNA-binding sites in proteins. J Mol Biol 2022; 434:167640. [PMID: 35597551 DOI: 10.1016/j.jmb.2022.167640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Sequence-based prediction of DNA-binding residues in a protein is a widely studied problem for which machine learning methods with continuously improving predictive power have been developed. Concatenated rows within a sliding window of a Position Specific Substitution Matrix (PSSM) of the protein concerned are currently used as the primary feature set in almost all the methods of predicting DNA-binding residues. Here we report that these evolutionary profiles are powerful, only for identifying conserved binding sites and fall short for the residue positions which undergo binding to non-binding transitions in closely related proteins. We created a database of highly similar protein pairs with known protein-DNA complexes and investigated differential predictability of conserved and transient binding within each pair. Retraining machine learning models uniformly, we compared the predictive powers of the models trained on PSSMs against similarly trained models on sparse-encoded single sequences. We found that the transient binding site predictions from evolutionary profiles are outperformed by single sequence based models under controlled training and test experiments by as much as 8 percentage points. Thus, we conclude that the PSSM-based models are inadequate to predict high specificity DNA-binding residues. These findings are of critical significance for the design of mutant- and species-specific DNA ligands and for homology based modeling of protein-DNA complexes.
Collapse
Affiliation(s)
- Ajay Arya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, INDIA
| | - Dana Mary Varghese
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, INDIA
| | - Ajay Kumar Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, INDIA
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, INDIA.
| |
Collapse
|
50
|
Zou H, Yang F, Yin Z. Identification of tumor homing peptides by utilizing hybrid feature representation. J Biomol Struct Dyn 2022; 41:3405-3412. [PMID: 35262448 DOI: 10.1080/07391102.2022.2049368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is one of the serious diseases, recent studies reported that tumor homing peptides (THPs) play a key role in treatment of cancer. Due to the experimental methods are time-consuming and expensive, it is urgent to develop automatic computational approaches to identify THPs. Hence, in this study, we proposed a novel machine learning methods to distinguish THPs from non-THPs, in which the peptide sequences firstly encoded by pseudo residue pairwise energy content matrix (PseRECM) and pseudo physicochemical property (PsePC). Moreover, the least absolute shrinkage and selection operator (LAASO) was employed to select optimal features from the extracted features. All of these selected features were fed into support vector machine (SVM) for identifying THPs. We achieved 89.02%, 88.49%, and 94.58% classification accuracy on the Main, Small, and Main90 dataset, respectively. Experimental results showed that our proposed method outperforms the existing predictors on the same benchmark datasets. It indicates that the proposed method may be a useful tool in identifying THPs. The datasets and codes used in current study are available at https://figshare.com/articles/online_resource/iTHPs/16778770.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hongliang Zou
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Fan Yang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhijian Yin
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|